域和元组关系演算
上述两者之间有“真正”的区别吗? 除了语法之间最微小的差异之外?
Is there a "real" difference between the above two?
Other than the tiniest minute difference between their syntax?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
面向元组的微积分使用元组变量,即,其唯一允许的值是该关系的元组的变量。 例如,QUEL 面向域的微积分具有域变量,即范围在底层域上而不是在关系上的变量。 例如,ILL、DEDUCE...面向元组的微积分使用元组变量,即其唯一允许的值是该关系的元组的变量。 乙
The tuple-oriented calculus uses a tuple variables i.e., variable whose only permitted values are tuples of that relation. E.g. QUELThe domain-oriented calculus has domain variables i.e., variables that range over the underlying domains instead of over relation. E.g. ILL, DEDUCE....The tuple-oriented calculus uses a tuple variables i.e., variable whose only permitted values are tuples of that relation. E
据我记得,它们具有同样的表达能力——也就是说,任何可以使用域关系代数表达的东西也可以使用元组关系演算来表达。 有些人发现 DRA 更容易解释......
From what I recall they're equally expressive - that is, anything that can be expressed using domain relational algebra can also be expressed using tuple relational calculus. Some people find DRA easier to interpret...
域演算与元组演算的不同之处在于公式中使用的变量类型:
变量的范围不是元组,而是属性域中的单个值。
为了形成查询结果的 n 阶关系,我们必须有 n 个这样的域变量——每个属性一个。
Domain calculus differs from tuple calculus in the type of variables used in formulas:
Rather than having variables range over tuples, the variables range over single values from domains of attributes.
To form a relation of degree n for a query result, we must have n of these domain variables— one for each attribute.
两者之间存在很大的概念差异。在元组关系演算的情况下,您对每个元组进行操作,但在域关系演算的情况下,您处理每个列或属性。这两种方法都可以用来获得任何结果。
There is a very big conceptual difference between the two.In case of tuple relational calculus ,you operate on each tuples but in case of domain relational calculus ,you deal with each column or attribute.Both methods can be used to get any result.