将树列表转换为层次结构字典

发布于 2024-07-17 17:10:44 字数 806 浏览 4 评论 0原文

我有一个带有属性的元素列表:parent、level、is_leaf_node、is_root_node、is_child_node。

我想将此列表转换为层次结构字典。 输出字典示例:

{
        'Technology':
            {
             'Gadgets':{},
             'Gaming':{},
             'Programming':
                {
                    'Python':{},
                    'PHP':{},
                    'Ruby':{},
                    'C++':{}
                },
             'Enterprise':{},
             'Mac':{},
             'Mobile':{},
             'Seo':{},
             'Ui':{},
             'Virtual Worlds':{},
             'Windows':{},
            },
        'News':{
            'Blogging':{},
            'Economics':{},
            'Journalism':{},
            'Politics':{},
            'News':{}
            },}

我不知道算法。 怎么做?

I have a list of elements with attrs: parent, level, is_leaf_node, is_root_node, is_child_node.

I want to convert this list to hierarchy dict.
Example of output dict:

{
        'Technology':
            {
             'Gadgets':{},
             'Gaming':{},
             'Programming':
                {
                    'Python':{},
                    'PHP':{},
                    'Ruby':{},
                    'C++':{}
                },
             'Enterprise':{},
             'Mac':{},
             'Mobile':{},
             'Seo':{},
             'Ui':{},
             'Virtual Worlds':{},
             'Windows':{},
            },
        'News':{
            'Blogging':{},
            'Economics':{},
            'Journalism':{},
            'Politics':{},
            'News':{}
            },}

I don't know algorithm. How to do it?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

我家小可爱 2024-07-24 17:10:44

这是一个不太复杂的递归版本,如所描述的 chmod 700 。 当然完全未经测试:

def build_tree(nodes):
    # create empty tree to fill
    tree = {}

    # fill in tree starting with roots (those with no parent)
    build_tree_recursive(tree, None, nodes)

    return tree

def build_tree_recursive(tree, parent, nodes):
    # find children
    children  = [n for n in nodes if n.parent == parent]

    # build a subtree for each child
    for child in children:
        # start new subtree
        tree[child.name] = {}

        # call recursively to build a subtree for current node
        build_tree_recursive(tree[child.name], child, nodes)

Here's a less sophisticated, recursive version like chmod 700 described. Completely untested of course:

def build_tree(nodes):
    # create empty tree to fill
    tree = {}

    # fill in tree starting with roots (those with no parent)
    build_tree_recursive(tree, None, nodes)

    return tree

def build_tree_recursive(tree, parent, nodes):
    # find children
    children  = [n for n in nodes if n.parent == parent]

    # build a subtree for each child
    for child in children:
        # start new subtree
        tree[child.name] = {}

        # call recursively to build a subtree for current node
        build_tree_recursive(tree[child.name], child, nodes)
你的往事 2024-07-24 17:10:44

没有父母的一切都是你的最高水平,所以首先要做出这些决定。 然后第二次遍历你的数组,找到顶层父级的所有内容,等等......它可以写成循环或递归函数。 除了“父母”之外,您实际上不需要提供任何信息。

Everything without a parent is your top level, so make those dicts first. Then do a second pass through your array to find everything with a parent at that top level, etc... It could be written as a loop or a recursive function. You really don't need any of the provided info besides "parent".

雨后咖啡店 2024-07-24 17:10:44

听起来您基本上想做的是拓扑排序的变体。 最常见的算法是源删除算法。 伪代码看起来像这样:

import copy
def TopSort(elems): #elems is an unsorted list of elements.
    unsorted = set(elems)
    output_dict = {}
    for item in elems:
        if item.is_root():
            output_dict[item.name] = {}
            unsorted.remove(item)
            FindChildren(unsorted, item.name, output_dict[item.name])
    return output_dict

def FindChildren(unsorted, name, curr_dict):
    for item in unsorted:
        if item.parent == name:
            curr_dict[item.name] = {}
            #NOTE:  the next line won't work in Python.  You
            #can't modify a set while iterating over it.
            unsorted.remove(item)
            FindChildren(unsorted, item.name, curr_dict[item.name])

这显然在几个地方被破坏了(至少作为实际的 Python 代码)。 不过,希望能让您了解该算法的工作原理。 请注意,如果您拥有的项目中存在循环(假设项目 a 以项目 b 作为父项,而项目 b 以项目 a 作为父项),则这将严重失败。 但无论如何,这可能无法以您想要的格式表示。

It sounds like what you're basically wanting to do is a variant of topological sorting. The most common algorithm for this is the source removal algorithm. The pseudocode would look something like this:

import copy
def TopSort(elems): #elems is an unsorted list of elements.
    unsorted = set(elems)
    output_dict = {}
    for item in elems:
        if item.is_root():
            output_dict[item.name] = {}
            unsorted.remove(item)
            FindChildren(unsorted, item.name, output_dict[item.name])
    return output_dict

def FindChildren(unsorted, name, curr_dict):
    for item in unsorted:
        if item.parent == name:
            curr_dict[item.name] = {}
            #NOTE:  the next line won't work in Python.  You
            #can't modify a set while iterating over it.
            unsorted.remove(item)
            FindChildren(unsorted, item.name, curr_dict[item.name])

This obviously is broken in a couple of places (at least as actual Python code). However, hopefully that will give you an idea of how the algorithm will work. Note that this will fail horribly if there's a cycle in the items you have (say item a has item b as a parent while item b has item a as a parent). But then that would probably be impossible to represent in the format you're wanting to do anyway.

千纸鹤 2024-07-24 17:10:44

像这样简单的事情可能会起作用:

def build_tree(category_data):
  top_level_map = {}
  cat_map = {}
  for cat_name, parent, depth in cat_data:
    cat_map.setdefault(parent, {})
    cat_map.setdefault(cat_name, {})
    cat_map[parent][cat_name] = cat_map[cat_name]
    if depth == 0:
      top_level_map[cat_name] = cat_map[cat_name]

  return top_level_map

Something simple like this might work:

def build_tree(category_data):
  top_level_map = {}
  cat_map = {}
  for cat_name, parent, depth in cat_data:
    cat_map.setdefault(parent, {})
    cat_map.setdefault(cat_name, {})
    cat_map[parent][cat_name] = cat_map[cat_name]
    if depth == 0:
      top_level_map[cat_name] = cat_map[cat_name]

  return top_level_map
飘逸的'云 2024-07-24 17:10:44

一个很好的递归方法来做到这一点:

def build_tree(elems):
  elem_with_children = {}

  def _build_children_sub_tree(parent):
      cur_dict = {
          'id': parent,
          # put whatever attributes here
      }  
      if parent in elem_with_children.keys():
          cur_dict["children"] = [_build_children_sub_tree(cid) for cid in elem_with_children[parent]]
      return cur_dict

  for item in elems:
      cid = item['id']
      pid = item['parent']
      elem_with_children.setdefault(pid, []).append(cid)

  res = _build_children_sub_tree(-1) # -1 is your root
  return res

a nice recursive way to do it:

def build_tree(elems):
  elem_with_children = {}

  def _build_children_sub_tree(parent):
      cur_dict = {
          'id': parent,
          # put whatever attributes here
      }  
      if parent in elem_with_children.keys():
          cur_dict["children"] = [_build_children_sub_tree(cid) for cid in elem_with_children[parent]]
      return cur_dict

  for item in elems:
      cid = item['id']
      pid = item['parent']
      elem_with_children.setdefault(pid, []).append(cid)

  res = _build_children_sub_tree(-1) # -1 is your root
  return res
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文