组合联合概率

发布于 2024-07-15 06:20:55 字数 413 浏览 7 评论 0原文

我正在尝试计算概率分布的表达式(与生物信息学相关),并且在组合来自两个不同来源的随机变量的信息时遇到困难。 本质上,场景如下: 有 3 个离散随机变量 X、A 和 A。 B. X 依赖于 A 和 B。A 和 B 仅通过 X 相关,即给定 X 时 A 和 B 是独立的。现在,我导出了以下表达式: P(X, A) 和 P(X, B)。 我需要计算 P(X, A, B) - 这不是链式法则的简单应用。

因为 P(A) 可用,所以我可以从第一个表达式导出 P(X | A)。 B 永远不会独立于 A 被观察到,P(B) 不容易获得 - 充其量我可以通过边缘化 A 来近似它,但表达式 P(A, B) 没有闭合形式,因此积分很棘手。

关于如何在不丢弃信息的情况下导出 P(X, A, B) 有什么想法吗? 提前谢谢了。

阿米特

I am trying to work out the expression for a probability distribution (related to bioinformatics), and am having trouble combining the information about a random variable from two different sources. Essentially, here is the scenario:
There are 3 discrete random variables X, A & B. X depends on A and B. A and B are related only through X, i.e. A and B are independent given X. Now, I have derived the expressions for:
P(X, A) and P(X, B). I need to calculate P(X, A, B) - this is not a straightforward application of the chain rule.

I can derive P(X | A) from the first expression since P(A) is available. B is never observed independently of A, P(B) is not readily available - at best I can approximate it by marginalizing over A, but the expression P(A, B) does not have a closed form so the integration is tricky.

Any thoughts on how P(X, A, B) can be derived, without discarding information? Many thanks in advance.

Amit

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

删除→记忆 2024-07-22 06:20:55

您在这里处理的是一个无向无环图。 给定X,A有条件地独立于B,但X取决于(我直接假设)A和B。我对你的问题的性质有点困惑,即你的概率分布的指定形式,但你可以看看信念传播。

What you're dealing with here is an undirected acyclic graph. A is conditionally independent of B given X, but X depends (I assume directly) on A and B. I'm a little confused about the nature of your problem, i.e. what form your probability distributions are specified in, but you could look at belief propagation.

好倦 2024-07-22 06:20:55

好吧,自从我做联合概率以来已经很长了,所以对此持保留态度,但考虑到 A 和 B 是正交的,我首先要开始寻找的是类似这样的表达式:

P(X, A, B) = P(X,A) + (P(X,B) * (1-P(X,A)));

再说一次,这只是为了给你一个探索的想法,因为我已经很长时间没有做过这类工作了!

Ok, it has been a long time since I've done joint probabilities so take this with a big grain of salt but the first place I would start looking, given that A and B are orthogonal, is for an expression something like:

P(X, A, B) = P(X,A) + (P(X,B) * (1-P(X,A)));

Again, this is just to give you an idea to explore as it has been a very long time since I did this type of work!

江湖彼岸 2024-07-22 06:20:55

就您观察到的内容和未知的内容而言,您的问题非常不清楚。 似乎您明确陈述的唯一事实是 A 和 B 是独立的,给定 X。也就是说,

假设: P(A,B|X)=P(A|X)P(B|X)

因此: P(A ,B,X)=P(A,B|X)P(X)=P(A|X)P(B|X)P(X)=P(A,X)P(X)=P(B ,X)P(X)

选择因式分解。

Your question is very unclear in terms of what you observe and what are unknowns. It seems like the only fact that you state clearly is A and B are independent given X. That is,

Assumption: P(A,B|X)=P(A|X)P(B|X)

Hence: P(A,B,X)=P(A,B|X)P(X)=P(A|X)P(B|X)P(X)=P(A,X)P(X)=P(B,X)P(X)

Take your pick of factorizations.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文