T-SQL 中的编辑距离

发布于 2024-07-14 13:16:33 字数 40 浏览 12 评论 0原文

我对 T-SQL 计算 Levenshtein 距离的算法感兴趣。

I am interested in algorithm in T-SQL calculating Levenshtein distance.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(7

风追烟花雨 2024-07-21 13:16:33

我在TSQL中实现了Levenshtein编辑距离函数 进行了多项优化,提高了我所知道的其他版本的速度。 如果两个字符串的开头有共同的字符(共享前缀),结尾有共同的字符(共享后缀),并且当字符串很大并且提供了最大编辑距离时,速度的提高是显着的。 例如,当输入是两个非常相似的 4000 个字符串,并且指定最大编辑距离为 2 时,这几乎比 edit_distance_within 函数在接受的答案中,在 0.073 秒(73 毫秒)内返回答案,而不是 55 秒。 它的内存效率也很高,使用的空间等于两个输入字符串中较大的一个加上一些常量空间。 它使用表示列的单个 nvarchar“数组”,并在其中就地进行所有计算,以及一些辅助 int 变量。

优化:

  • 跳过共享前缀和/或后缀的处理,
  • 如果较大的字符串以整个较小的字符串开始或结束,则提前
  • 返回如果大小差异保证超出最大距离,则提前返回
  • 仅使用表示矩阵中列的单个数组(实现为 nvarchar )
  • 当给定最大距离时,时间复杂度从 (len1*len2) 到 (min(len1,len2)) 即
  • 当给定最大距离时呈线性,一旦已知最大距离界限无法实现,就尽早返回

这里是代码(2014 年 1 月 20 日更新以加快速度):

-- =============================================
-- Computes and returns the Levenshtein edit distance between two strings, i.e. the
-- number of insertion, deletion, and sustitution edits required to transform one
-- string to the other, or NULL if @max is exceeded. Comparisons use the case-
-- sensitivity configured in SQL Server (case-insensitive by default).
-- 
-- Based on Sten Hjelmqvist's "Fast, memory efficient" algorithm, described
-- at http://www.codeproject.com/Articles/13525/Fast-memory-efficient-Levenshtein-algorithm,
-- with some additional optimizations.
-- =============================================
CREATE FUNCTION [dbo].[Levenshtein](
    @s nvarchar(4000)
  , @t nvarchar(4000)
  , @max int
)
RETURNS int
WITH SCHEMABINDING
AS
BEGIN
    DECLARE @distance int = 0 -- return variable
          , @v0 nvarchar(4000)-- running scratchpad for storing computed distances
          , @start int = 1      -- index (1 based) of first non-matching character between the two string
          , @i int, @j int      -- loop counters: i for s string and j for t string
          , @diag int          -- distance in cell diagonally above and left if we were using an m by n matrix
          , @left int          -- distance in cell to the left if we were using an m by n matrix
          , @sChar nchar      -- character at index i from s string
          , @thisJ int          -- temporary storage of @j to allow SELECT combining
          , @jOffset int      -- offset used to calculate starting value for j loop
          , @jEnd int          -- ending value for j loop (stopping point for processing a column)
          -- get input string lengths including any trailing spaces (which SQL Server would otherwise ignore)
          , @sLen int = datalength(@s) / datalength(left(left(@s, 1) + '.', 1))    -- length of smaller string
          , @tLen int = datalength(@t) / datalength(left(left(@t, 1) + '.', 1))    -- length of larger string
          , @lenDiff int      -- difference in length between the two strings
    -- if strings of different lengths, ensure shorter string is in s. This can result in a little
    -- faster speed by spending more time spinning just the inner loop during the main processing.
    IF (@sLen > @tLen) BEGIN
        SELECT @v0 = @s, @i = @sLen -- temporarily use v0 for swap
        SELECT @s = @t, @sLen = @tLen
        SELECT @t = @v0, @tLen = @i
    END
    SELECT @max = ISNULL(@max, @tLen)
         , @lenDiff = @tLen - @sLen
    IF @lenDiff > @max RETURN NULL

    -- suffix common to both strings can be ignored
    WHILE(@sLen > 0 AND SUBSTRING(@s, @sLen, 1) = SUBSTRING(@t, @tLen, 1))
        SELECT @sLen = @sLen - 1, @tLen = @tLen - 1

    IF (@sLen = 0) RETURN @tLen

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1)) 
        SELECT @start = @start + 1
    IF (@start > 1) BEGIN
        SELECT @sLen = @sLen - (@start - 1)
             , @tLen = @tLen - (@start - 1)

        -- if all of shorter string matches prefix and/or suffix of longer string, then
        -- edit distance is just the delete of additional characters present in longer string
        IF (@sLen <= 0) RETURN @tLen

        SELECT @s = SUBSTRING(@s, @start, @sLen)
             , @t = SUBSTRING(@t, @start, @tLen)
    END

    -- initialize v0 array of distances
    SELECT @v0 = '', @j = 1
    WHILE (@j <= @tLen) BEGIN
        SELECT @v0 = @v0 + NCHAR(CASE WHEN @j > @max THEN @max ELSE @j END)
        SELECT @j = @j + 1
    END
    
    SELECT @jOffset = @max - @lenDiff
         , @i = 1
    WHILE (@i <= @sLen) BEGIN
        SELECT @distance = @i
             , @diag = @i - 1
             , @sChar = SUBSTRING(@s, @i, 1)
             -- no need to look beyond window of upper left diagonal (@i) + @max cells
             -- and the lower right diagonal (@i - @lenDiff) - @max cells
             , @j = CASE WHEN @i <= @jOffset THEN 1 ELSE @i - @jOffset END
             , @jEnd = CASE WHEN @i + @max >= @tLen THEN @tLen ELSE @i + @max END
        WHILE (@j <= @jEnd) BEGIN
            -- at this point, @distance holds the previous value (the cell above if we were using an m by n matrix)
            SELECT @left = UNICODE(SUBSTRING(@v0, @j, 1))
                 , @thisJ = @j
            SELECT @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1)) THEN @diag                    --match, no change
                     ELSE 1 + CASE WHEN @diag < @left AND @diag < @distance THEN @diag    --substitution
                                   WHEN @left < @distance THEN @left                    -- insertion
                                   ELSE @distance                                        -- deletion
                                END    END
            SELECT @v0 = STUFF(@v0, @thisJ, 1, NCHAR(@distance))
                 , @diag = @left
                 , @j = case when (@distance > @max) AND (@thisJ = @i + @lenDiff) then @jEnd + 2 else @thisJ + 1 end
        END
        SELECT @i = CASE WHEN @j > @jEnd + 1 THEN @sLen + 1 ELSE @i + 1 END
    END
    RETURN CASE WHEN @distance <= @max THEN @distance ELSE NULL END
END

正如此函数的注释中提到的,字符比较的区分大小写将遵循有效的排序规则。 默认情况下,SQL Server 的排序规则将导致不区分大小写的比较。
修改此函数以始终区分大小写的一种方法是向比较字符串的两个位置添加特定的排序规则。 但是,我还没有对此进行彻底测试,特别是对于数据库使用非默认排序规则时的副作用。
以下是如何更改这两行以强制区分大小写的比较:

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1) COLLATE SQL_Latin1_General_Cp1_CS_AS) 

            SELECT @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1) COLLATE SQL_Latin1_General_Cp1_CS_AS) THEN @diag                    --match, no change

I implemented the Levenshtein edit distance function in TSQL with several optimizations that improves the speed over the other versions I'm aware of. In cases where the two strings have characters in common at their start (shared prefix), characters in common at their end (shared suffix), and when the strings are large and a max edit distance is provided, the improvement in speed is significant. For example, when the inputs are two very similar 4000 character strings, and a max edit distance of 2 is specified, this is almost three orders of magnitude faster than the edit_distance_within function in the accepted answer, returning the answer in 0.073 seconds (73 milliseconds) vs 55 seconds. It's also memory efficient, using space equal to the larger of the two input strings plus some constant space. It uses a single nvarchar "array" representing a column, and does all computations in-place in that, plus some helper int variables.

Optimizations:

  • skips processing of shared prefix and/or suffix
  • early return if larger string starts or ends with entire smaller string
  • early return if difference in sizes guarantees max distance will be exceeded
  • uses only a single array representing a column in the matrix (implemented as nvarchar)
  • when a max distance is given, time complexity goes from (len1*len2) to (min(len1,len2)) i.e. linear
  • when a max distance is given, early return as soon as max distance bound is known not to be achievable

Here is the code (updated 1/20/2014 to speed it up a bit more):

-- =============================================
-- Computes and returns the Levenshtein edit distance between two strings, i.e. the
-- number of insertion, deletion, and sustitution edits required to transform one
-- string to the other, or NULL if @max is exceeded. Comparisons use the case-
-- sensitivity configured in SQL Server (case-insensitive by default).
-- 
-- Based on Sten Hjelmqvist's "Fast, memory efficient" algorithm, described
-- at http://www.codeproject.com/Articles/13525/Fast-memory-efficient-Levenshtein-algorithm,
-- with some additional optimizations.
-- =============================================
CREATE FUNCTION [dbo].[Levenshtein](
    @s nvarchar(4000)
  , @t nvarchar(4000)
  , @max int
)
RETURNS int
WITH SCHEMABINDING
AS
BEGIN
    DECLARE @distance int = 0 -- return variable
          , @v0 nvarchar(4000)-- running scratchpad for storing computed distances
          , @start int = 1      -- index (1 based) of first non-matching character between the two string
          , @i int, @j int      -- loop counters: i for s string and j for t string
          , @diag int          -- distance in cell diagonally above and left if we were using an m by n matrix
          , @left int          -- distance in cell to the left if we were using an m by n matrix
          , @sChar nchar      -- character at index i from s string
          , @thisJ int          -- temporary storage of @j to allow SELECT combining
          , @jOffset int      -- offset used to calculate starting value for j loop
          , @jEnd int          -- ending value for j loop (stopping point for processing a column)
          -- get input string lengths including any trailing spaces (which SQL Server would otherwise ignore)
          , @sLen int = datalength(@s) / datalength(left(left(@s, 1) + '.', 1))    -- length of smaller string
          , @tLen int = datalength(@t) / datalength(left(left(@t, 1) + '.', 1))    -- length of larger string
          , @lenDiff int      -- difference in length between the two strings
    -- if strings of different lengths, ensure shorter string is in s. This can result in a little
    -- faster speed by spending more time spinning just the inner loop during the main processing.
    IF (@sLen > @tLen) BEGIN
        SELECT @v0 = @s, @i = @sLen -- temporarily use v0 for swap
        SELECT @s = @t, @sLen = @tLen
        SELECT @t = @v0, @tLen = @i
    END
    SELECT @max = ISNULL(@max, @tLen)
         , @lenDiff = @tLen - @sLen
    IF @lenDiff > @max RETURN NULL

    -- suffix common to both strings can be ignored
    WHILE(@sLen > 0 AND SUBSTRING(@s, @sLen, 1) = SUBSTRING(@t, @tLen, 1))
        SELECT @sLen = @sLen - 1, @tLen = @tLen - 1

    IF (@sLen = 0) RETURN @tLen

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1)) 
        SELECT @start = @start + 1
    IF (@start > 1) BEGIN
        SELECT @sLen = @sLen - (@start - 1)
             , @tLen = @tLen - (@start - 1)

        -- if all of shorter string matches prefix and/or suffix of longer string, then
        -- edit distance is just the delete of additional characters present in longer string
        IF (@sLen <= 0) RETURN @tLen

        SELECT @s = SUBSTRING(@s, @start, @sLen)
             , @t = SUBSTRING(@t, @start, @tLen)
    END

    -- initialize v0 array of distances
    SELECT @v0 = '', @j = 1
    WHILE (@j <= @tLen) BEGIN
        SELECT @v0 = @v0 + NCHAR(CASE WHEN @j > @max THEN @max ELSE @j END)
        SELECT @j = @j + 1
    END
    
    SELECT @jOffset = @max - @lenDiff
         , @i = 1
    WHILE (@i <= @sLen) BEGIN
        SELECT @distance = @i
             , @diag = @i - 1
             , @sChar = SUBSTRING(@s, @i, 1)
             -- no need to look beyond window of upper left diagonal (@i) + @max cells
             -- and the lower right diagonal (@i - @lenDiff) - @max cells
             , @j = CASE WHEN @i <= @jOffset THEN 1 ELSE @i - @jOffset END
             , @jEnd = CASE WHEN @i + @max >= @tLen THEN @tLen ELSE @i + @max END
        WHILE (@j <= @jEnd) BEGIN
            -- at this point, @distance holds the previous value (the cell above if we were using an m by n matrix)
            SELECT @left = UNICODE(SUBSTRING(@v0, @j, 1))
                 , @thisJ = @j
            SELECT @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1)) THEN @diag                    --match, no change
                     ELSE 1 + CASE WHEN @diag < @left AND @diag < @distance THEN @diag    --substitution
                                   WHEN @left < @distance THEN @left                    -- insertion
                                   ELSE @distance                                        -- deletion
                                END    END
            SELECT @v0 = STUFF(@v0, @thisJ, 1, NCHAR(@distance))
                 , @diag = @left
                 , @j = case when (@distance > @max) AND (@thisJ = @i + @lenDiff) then @jEnd + 2 else @thisJ + 1 end
        END
        SELECT @i = CASE WHEN @j > @jEnd + 1 THEN @sLen + 1 ELSE @i + 1 END
    END
    RETURN CASE WHEN @distance <= @max THEN @distance ELSE NULL END
END

As mentioned in the comments of this function, the case sensitivity of the character comparisons will follow the collation that's in effect. By default, SQL Server's collation is one that will result in case insensitive comparisons.
One way to modify this function to always be case sensitive would be to add a specific collation to the two places where strings are compared. However, I have not thoroughly tested this, especially for side effects when the database is using a non-default collation.
These are how the two lines would be changed to force case sensitive comparisons:

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1) COLLATE SQL_Latin1_General_Cp1_CS_AS) 

and

            SELECT @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1) COLLATE SQL_Latin1_General_Cp1_CS_AS) THEN @diag                    --match, no change
初见 2024-07-21 13:16:33

Arnold Fribble 在 sqlteam.com/forums 上提出了两项​​提案,

这是 2006 年较年轻的一个:

SET QUOTED_IDENTIFIER ON 
GO
SET ANSI_NULLS ON 
GO

CREATE FUNCTION edit_distance_within(@s nvarchar(4000), @t nvarchar(4000), @d int)
RETURNS int
AS
BEGIN
  DECLARE @sl int, @tl int, @i int, @j int, @sc nchar, @c int, @c1 int,
    @cv0 nvarchar(4000), @cv1 nvarchar(4000), @cmin int
  SELECT @sl = LEN(@s), @tl = LEN(@t), @cv1 = '', @j = 1, @i = 1, @c = 0
  WHILE @j <= @tl
    SELECT @cv1 = @cv1 + NCHAR(@j), @j = @j + 1
  WHILE @i <= @sl
  BEGIN
    SELECT @sc = SUBSTRING(@s, @i, 1), @c1 = @i, @c = @i, @cv0 = '', @j = 1, @cmin = 4000
    WHILE @j <= @tl
    BEGIN
      SET @c = @c + 1
      SET @c1 = @c1 - CASE WHEN @sc = SUBSTRING(@t, @j, 1) THEN 1 ELSE 0 END
      IF @c > @c1 SET @c = @c1
      SET @c1 = UNICODE(SUBSTRING(@cv1, @j, 1)) + 1
      IF @c > @c1 SET @c = @c1
      IF @c < @cmin SET @cmin = @c
      SELECT @cv0 = @cv0 + NCHAR(@c), @j = @j + 1
    END
    IF @cmin > @d BREAK
    SELECT @cv1 = @cv0, @i = @i + 1
  END
  RETURN CASE WHEN @cmin <= @d AND @c <= @d THEN @c ELSE -1 END
END
GO

Arnold Fribble had two proposals on sqlteam.com/forums

This is the younger one from 2006:

SET QUOTED_IDENTIFIER ON 
GO
SET ANSI_NULLS ON 
GO

CREATE FUNCTION edit_distance_within(@s nvarchar(4000), @t nvarchar(4000), @d int)
RETURNS int
AS
BEGIN
  DECLARE @sl int, @tl int, @i int, @j int, @sc nchar, @c int, @c1 int,
    @cv0 nvarchar(4000), @cv1 nvarchar(4000), @cmin int
  SELECT @sl = LEN(@s), @tl = LEN(@t), @cv1 = '', @j = 1, @i = 1, @c = 0
  WHILE @j <= @tl
    SELECT @cv1 = @cv1 + NCHAR(@j), @j = @j + 1
  WHILE @i <= @sl
  BEGIN
    SELECT @sc = SUBSTRING(@s, @i, 1), @c1 = @i, @c = @i, @cv0 = '', @j = 1, @cmin = 4000
    WHILE @j <= @tl
    BEGIN
      SET @c = @c + 1
      SET @c1 = @c1 - CASE WHEN @sc = SUBSTRING(@t, @j, 1) THEN 1 ELSE 0 END
      IF @c > @c1 SET @c = @c1
      SET @c1 = UNICODE(SUBSTRING(@cv1, @j, 1)) + 1
      IF @c > @c1 SET @c = @c1
      IF @c < @cmin SET @cmin = @c
      SELECT @cv0 = @cv0 + NCHAR(@c), @j = @j + 1
    END
    IF @cmin > @d BREAK
    SELECT @cv1 = @cv0, @i = @i + 1
  END
  RETURN CASE WHEN @cmin <= @d AND @c <= @d THEN @c ELSE -1 END
END
GO
时光清浅 2024-07-21 13:16:33

IIRC,使用 SQL Server 2005 及更高版本,您可以使用任何 .NET 语言编写存储过程: 在 SQL Server 2005 中使用 CLR 集成。 这样,编写一个计算 Levenstein 距离 的过程就不难了。

一个简单的你好,世界! 从帮助中提取:

using System;
using System.Data;
using Microsoft.SqlServer.Server;
using System.Data.SqlTypes;

public class HelloWorldProc
{
    [Microsoft.SqlServer.Server.SqlProcedure]
    public static void HelloWorld(out string text)
    {
        SqlContext.Pipe.Send("Hello world!" + Environment.NewLine);
        text = "Hello world!";
    }
}

然后在您的 SQL Server 中运行以下命令:

CREATE ASSEMBLY helloworld from 'c:\helloworld.dll' WITH PERMISSION_SET = SAFE

CREATE PROCEDURE hello
@i nchar(25) OUTPUT
AS
EXTERNAL NAME helloworld.HelloWorldProc.HelloWorld

现在您可以测试运行它:

DECLARE @J nchar(25)
EXEC hello @J out
PRINT @J

希望这会有所帮助。

IIRC, with SQL Server 2005 and later you can write stored procedures in any .NET language: Using CLR Integration in SQL Server 2005. With that it shouldn't be hard to write a procedure for calculating Levenstein distance.

A simple Hello, World! extracted from the help:

using System;
using System.Data;
using Microsoft.SqlServer.Server;
using System.Data.SqlTypes;

public class HelloWorldProc
{
    [Microsoft.SqlServer.Server.SqlProcedure]
    public static void HelloWorld(out string text)
    {
        SqlContext.Pipe.Send("Hello world!" + Environment.NewLine);
        text = "Hello world!";
    }
}

Then in your SQL Server run the following:

CREATE ASSEMBLY helloworld from 'c:\helloworld.dll' WITH PERMISSION_SET = SAFE

CREATE PROCEDURE hello
@i nchar(25) OUTPUT
AS
EXTERNAL NAME helloworld.HelloWorldProc.HelloWorld

And now you can test run it:

DECLARE @J nchar(25)
EXEC hello @J out
PRINT @J

Hope this helps.

苍风燃霜 2024-07-21 13:16:33

您可以使用 Levenshtein 距离算法来比较字符串

您可以在 http://www.kodyaz.com/articles/fuzzy-string-matching-using-levenshtein-distance-sql-server.aspx

CREATE FUNCTION edit_distance(@s1 nvarchar(3999), @s2 nvarchar(3999))
RETURNS int
AS
BEGIN
 DECLARE @s1_len int, @s2_len int
 DECLARE @i int, @j int, @s1_char nchar, @c int, @c_temp int
 DECLARE @cv0 varbinary(8000), @cv1 varbinary(8000)

 SELECT
  @s1_len = LEN(@s1),
  @s2_len = LEN(@s2),
  @cv1 = 0x0000,
  @j = 1, @i = 1, @c = 0

 WHILE @j <= @s2_len
  SELECT @cv1 = @cv1 + CAST(@j AS binary(2)), @j = @j + 1

 WHILE @i <= @s1_len
 BEGIN
  SELECT
   @s1_char = SUBSTRING(@s1, @i, 1),
   @c = @i,
   @cv0 = CAST(@i AS binary(2)),
   @j = 1

  WHILE @j <= @s2_len
  BEGIN
   SET @c = @c + 1
   SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j-1, 2) AS int) +
    CASE WHEN @s1_char = SUBSTRING(@s2, @j, 1) THEN 0 ELSE 1 END
   IF @c > @c_temp SET @c = @c_temp
   SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j+1, 2) AS int)+1
   IF @c > @c_temp SET @c = @c_temp
   SELECT @cv0 = @cv0 + CAST(@c AS binary(2)), @j = @j + 1
 END

 SELECT @cv1 = @cv0, @i = @i + 1
 END

 RETURN @c
END

(由 Joseph Gama 开发的函数)

用法:

select
 dbo.edit_distance('Fuzzy String Match','fuzzy string match'),
 dbo.edit_distance('fuzzy','fuzy'),
 dbo.edit_distance('Fuzzy String Match','fuzy string match'),
 dbo.edit_distance('levenshtein distance sql','levenshtein sql server'),
 dbo.edit_distance('distance','server')

该算法只是返回 stpe 计数,通过一步替换不同的字符来将一个字符串更改为另一个字符串

You can use Levenshtein Distance Algorithm for comparing strings

Here you can find a T-SQL example at http://www.kodyaz.com/articles/fuzzy-string-matching-using-levenshtein-distance-sql-server.aspx

CREATE FUNCTION edit_distance(@s1 nvarchar(3999), @s2 nvarchar(3999))
RETURNS int
AS
BEGIN
 DECLARE @s1_len int, @s2_len int
 DECLARE @i int, @j int, @s1_char nchar, @c int, @c_temp int
 DECLARE @cv0 varbinary(8000), @cv1 varbinary(8000)

 SELECT
  @s1_len = LEN(@s1),
  @s2_len = LEN(@s2),
  @cv1 = 0x0000,
  @j = 1, @i = 1, @c = 0

 WHILE @j <= @s2_len
  SELECT @cv1 = @cv1 + CAST(@j AS binary(2)), @j = @j + 1

 WHILE @i <= @s1_len
 BEGIN
  SELECT
   @s1_char = SUBSTRING(@s1, @i, 1),
   @c = @i,
   @cv0 = CAST(@i AS binary(2)),
   @j = 1

  WHILE @j <= @s2_len
  BEGIN
   SET @c = @c + 1
   SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j-1, 2) AS int) +
    CASE WHEN @s1_char = SUBSTRING(@s2, @j, 1) THEN 0 ELSE 1 END
   IF @c > @c_temp SET @c = @c_temp
   SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j+1, 2) AS int)+1
   IF @c > @c_temp SET @c = @c_temp
   SELECT @cv0 = @cv0 + CAST(@c AS binary(2)), @j = @j + 1
 END

 SELECT @cv1 = @cv0, @i = @i + 1
 END

 RETURN @c
END

(Function developped by Joseph Gama)

Usage :

select
 dbo.edit_distance('Fuzzy String Match','fuzzy string match'),
 dbo.edit_distance('fuzzy','fuzy'),
 dbo.edit_distance('Fuzzy String Match','fuzy string match'),
 dbo.edit_distance('levenshtein distance sql','levenshtein sql server'),
 dbo.edit_distance('distance','server')

The algorithm simply returns the stpe count to change one string into other by replacing a different character at one step

动次打次papapa 2024-07-21 13:16:33

我也在寻找 Levenshtein 算法的代码示例,很高兴在这里找到它。 当然,我想了解该算法是如何工作的,并且我正在玩一点上面的示例之一,我正在玩一点由 Veve。 为了更好地理解代码,我用矩阵创建了一个 EXCEL。

FUZZY 与 FUZY 的距离

图片内容超过 1000 个单词。

通过这个 EXCEL,我发现有可能进行额外的性能优化。 右上红色区域中的所有值都不需要计算。 每个红色单元格的值都会导致左侧单元格的值加 1。这是因为,该区域中的第二个字符串始终比第一个字符串长,这会导致每个字符的距离增加 1。

您可以通过使用语句 IF @j <= @i 并在该语句之前增加 @i 的值来反映这一点。

CREATE FUNCTION [dbo].[f_LevenshteinDistance](@s1 nvarchar(3999), @s2 nvarchar(3999))
    RETURNS int
    AS
    BEGIN
       DECLARE @s1_len  int;
       DECLARE @s2_len  int;
       DECLARE @i       int;
       DECLARE @j       int;
       DECLARE @s1_char nchar;
       DECLARE @c       int;
       DECLARE @c_temp  int;
       DECLARE @cv0     varbinary(8000);
       DECLARE @cv1     varbinary(8000);

       SELECT
          @s1_len = LEN(@s1),
          @s2_len = LEN(@s2),
          @cv1    = 0x0000  ,
          @j      = 1       , 
          @i      = 1       , 
          @c      = 0

       WHILE @j <= @s2_len
          SELECT @cv1 = @cv1 + CAST(@j AS binary(2)), @j = @j + 1;

          WHILE @i <= @s1_len
             BEGIN
                SELECT
                   @s1_char = SUBSTRING(@s1, @i, 1),
                   @c       = @i                   ,
                   @cv0     = CAST(@i AS binary(2)),
                   @j       = 1;

                SET @i = @i + 1;

                WHILE @j <= @s2_len
                   BEGIN
                      SET @c = @c + 1;

                      IF @j <= @i 
                         BEGIN
                            SET @c_temp = CAST(SUBSTRING(@cv1, @j + @j - 1, 2) AS int) + CASE WHEN @s1_char = SUBSTRING(@s2, @j, 1) THEN 0 ELSE 1 END;
                            IF @c > @c_temp SET @c = @c_temp
                            SET @c_temp = CAST(SUBSTRING(@cv1, @j + @j + 1, 2) AS int) + 1;
                            IF @c > @c_temp SET @c = @c_temp;
                         END;
                      SELECT @cv0 = @cv0 + CAST(@c AS binary(2)), @j = @j + 1;
                   END;
                SET @cv1 = @cv0;
          END;
       RETURN @c;
    END;

I was looking for a code example for the Levenshtein algorithm, too, and was happy to find it here. Of course I wanted to understand how the algorithm is working and I was playing around a little bit with one of the above examples I was playing around a little bit that was posted by Veve. In order to get a better understanding of the code I created an EXCEL with the Matrix.

distance for FUZZY compared with FUZY

Images say more than 1000 words.

With this EXCEL I found that there was potential for additional performance optimization. All values in the upper right red area do not need to be calculated. The value of each red cell results in the value of the left cell plus 1. This is because, the second string will be always longer in that area than the first one, what increases the distance by the value of 1 for each character.

You can reflect that by using the statement IF @j <= @i and increasing the value of @i Prior to this statement.

CREATE FUNCTION [dbo].[f_LevenshteinDistance](@s1 nvarchar(3999), @s2 nvarchar(3999))
    RETURNS int
    AS
    BEGIN
       DECLARE @s1_len  int;
       DECLARE @s2_len  int;
       DECLARE @i       int;
       DECLARE @j       int;
       DECLARE @s1_char nchar;
       DECLARE @c       int;
       DECLARE @c_temp  int;
       DECLARE @cv0     varbinary(8000);
       DECLARE @cv1     varbinary(8000);

       SELECT
          @s1_len = LEN(@s1),
          @s2_len = LEN(@s2),
          @cv1    = 0x0000  ,
          @j      = 1       , 
          @i      = 1       , 
          @c      = 0

       WHILE @j <= @s2_len
          SELECT @cv1 = @cv1 + CAST(@j AS binary(2)), @j = @j + 1;

          WHILE @i <= @s1_len
             BEGIN
                SELECT
                   @s1_char = SUBSTRING(@s1, @i, 1),
                   @c       = @i                   ,
                   @cv0     = CAST(@i AS binary(2)),
                   @j       = 1;

                SET @i = @i + 1;

                WHILE @j <= @s2_len
                   BEGIN
                      SET @c = @c + 1;

                      IF @j <= @i 
                         BEGIN
                            SET @c_temp = CAST(SUBSTRING(@cv1, @j + @j - 1, 2) AS int) + CASE WHEN @s1_char = SUBSTRING(@s2, @j, 1) THEN 0 ELSE 1 END;
                            IF @c > @c_temp SET @c = @c_temp
                            SET @c_temp = CAST(SUBSTRING(@cv1, @j + @j + 1, 2) AS int) + 1;
                            IF @c > @c_temp SET @c = @c_temp;
                         END;
                      SELECT @cv0 = @cv0 + CAST(@c AS binary(2)), @j = @j + 1;
                   END;
                SET @cv1 = @cv0;
          END;
       RETURN @c;
    END;
人生百味 2024-07-21 13:16:33

在 TSQL 中,比较两个项目的最佳且最快的方法是在索引列上连接表的 SELECT 语句。 因此,如果您想受益于 RDBMS 引擎的优势,这就是我建议实现编辑距离的方式。 TSQL 循环也可以工作,但对于大容量比较,其他语言中的 Levenstein 距离计算将比 TSQL 更快。

我已经在几个系统中使用一系列针对专门为此目的而设计的临时表的联接来实现编辑距离。 它需要一些繁重的预处理步骤 - 临时表的准备 - 但它在大量比较时效果很好。

简而言之:预处理包括创建、填充和索引临时表。 第一个包含引用 ID、一个单字母列和一个 charindex 列。 该表是通过运行一系列插入查询来填充的,这些查询将每个单词拆分为字母(使用 SELECT SUBSTRING),以创建与源列表中的单词具有字母一样多的行(我知道,这是很多行,但 SQL Server 可以处理数十亿行)行)。 然后制作第二个包含 2 个字母列的表,另一个包含 3 个字母列的表,等等。最终结果是一系列表,其中包含每个单词的引用 ID 和子字符串,以及它们位置的引用在这个词中。

完成此操作后,整个游戏就是复制这些表并将它们与 GROUP BY 选择查询中的副本连接起来,该查询会计算匹配的数量。 这为每个可能的单词对创建了一系列度量,然后将其重新聚合为每对单词的单个 Levenstein 距离。

从技术上讲,这与 Levenstein 距离(或其变体)的大多数其他实现非常不同,因此您需要深入了解 Levenstein 距离的工作原理以及其设计原因。 还要研究替代方案,因为通过这种方法,您最终会得到一系列基础指标,这些指标可以帮助同时计算编辑距离的许多变体,从而为您提供有趣的机器学习潜在改进。

本页之前的答案已经提到的另一点:尝试尽可能多地进行预处理,以消除不需要距离测量的对。 例如,应该排除没有一个共同字母的一对两个单词,因为可以从字符串的长度获得编辑距离。 或者不要测量同一个单词的两个副本之间的距离,因为它本质上是 0。 或者在进行测量之前删除重复项,如果您的单词列表来自长文本,则相同的单词可能会出现多次,因此仅测量一次距离将节省处理时间等。

In TSQL the best and fastest way to compare two items are SELECT statements that join tables on indexed columns. Therefore this is how I suggest to implement the editing distance if you want to benefit from the advantages of a RDBMS engine. TSQL Loops will work too, but Levenstein distance calculations will be faster in other languages than in TSQL for large volume comparisons.

I have implemented the editing distance in several systems using series of Joins against temporary tables designed for that purpose only. It requires some heavy pre-processing steps - the preparation of the temporary tables - but it works very well with large number of comparisons.

In a few words: the pre-processing consists of creating, populating and indexing temp tables. The first one contains reference ids, a one-letter column and a charindex column. This table is populated by running a series of insert queries that split every word into letters (using SELECT SUBSTRING) to create as many rows as word in the source list have letters (I know, that's a lot of rows but SQL server can handle billions of rows). Then make a second table with a 2-letter column, another table with a 3-letter column, etc. The end results is a series of tables which contain reference ids and substrings of each the words, as well a the reference of their position in the word.

Once this is done, the whole game is about duplicating these tables and joining them against their duplicate in a GROUP BY select query which counts the number of matches. This creates a series of measures for every possible pair of words, which are then re-aggregated into a single Levenstein distance per pair of words.

Technically this is very different than most other implementations of the Levenstein distance (or its variants) so you need to deeply understand how the Levenstein distance works and why it was designed as it is. Investigate the alternatives as well because with that method you end up with a series of underlying metrics which can help calculate many variants of the editing distance at the same time, providing you with interesting machine learning potential improvements.

Another point already mentioned by previous answers in this page: try to pre process as much as possible to eliminate the pairs that do not require distance measurement. For example a pair of two words that have not a single letter in common should be excluded, because the editing distance can be obtained from the length of the strings. Or do not measure the distance between two copies of the same word, since it is 0 by nature. Or remove duplicates before doing the measurement, if your list of words comes from a long text it is likely that the same words will appear more than once, so measuring the distance only once will save processing time, etc.

℉絮湮 2024-07-21 13:16:33

我的 Azure Synapse 模组(更改为使用 SET 而不是 SELECT):

-- =============================================
-- Computes and returns the Levenshtein edit distance between two strings, i.e. the
-- number of insertion, deletion, and sustitution edits required to transform one
-- string to the other, or NULL if @max is exceeded. Comparisons use the case-
-- sensitivity configured in SQL Server (case-insensitive by default).
-- 
-- Based on Sten Hjelmqvist's "Fast, memory efficient" algorithm, described
-- at http://www.codeproject.com/Articles/13525/Fast-memory-efficient-Levenshtein-algorithm,
-- with some additional optimizations.
-- =============================================
CREATE FUNCTION [db0].[Levenshtein](
    @s nvarchar(4000)
  , @t nvarchar(4000)
  , @max int
)
RETURNS int
WITH SCHEMABINDING
AS
BEGIN
    DECLARE @distance int = 0 -- return variable
          , @v0 nvarchar(4000)-- running scratchpad for storing computed distances
          , @start int = 1      -- index (1 based) of first non-matching character between the two string
          , @i int, @j int      -- loop counters: i for s string and j for t string
          , @diag int          -- distance in cell diagonally above and left if we were using an m by n matrix
          , @left int          -- distance in cell to the left if we were using an m by n matrix
          , @sChar nchar      -- character at index i from s string
          , @thisJ int          -- temporary storage of @j to allow SELECT combining
          , @jOffset int      -- offset used to calculate starting value for j loop
          , @jEnd int          -- ending value for j loop (stopping point for processing a column)
          -- get input string lengths including any trailing spaces (which SQL Server would otherwise ignore)
          , @sLen int = datalength(@s) / datalength(left(left(@s, 1) + '.', 1))    -- length of smaller string
          , @tLen int = datalength(@t) / datalength(left(left(@t, 1) + '.', 1))    -- length of larger string
          , @lenDiff int      -- difference in length between the two strings
    -- if strings of different lengths, ensure shorter string is in s. This can result in a little
    -- faster speed by spending more time spinning just the inner loop during the main processing.
    IF (@sLen > @tLen) BEGIN
        SET @v0 = @s
        SET @i = @sLen -- temporarily use v0 for swap
        SET @s = @t
        SET @sLen = @tLen
        SET @t = @v0
        SET @tLen = @i
    END
    SET @max = ISNULL(@max, @tLen)
    SET @lenDiff = @tLen - @sLen

    IF @lenDiff > @max RETURN NULL

    -- suffix common to both strings can be ignored
    WHILE(@sLen > 0 AND SUBSTRING(@s, @sLen, 1) = SUBSTRING(@t, @tLen, 1))
        SET @sLen = @sLen - 1
        SET @tLen = @tLen - 1

    IF (@sLen = 0) RETURN @tLen

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1)) 
        SET @start = @start + 1
    IF (@start > 1) BEGIN
        SET @sLen = @sLen - (@start - 1)
        SET @tLen = @tLen - (@start - 1)

        -- if all of shorter string matches prefix and/or suffix of longer string, then
        -- edit distance is just the delete of additional characters present in longer string
        IF (@sLen <= 0) RETURN @tLen

        SET @s = SUBSTRING(@s, @start, @sLen)
        SET @t = SUBSTRING(@t, @start, @tLen)
    END

    -- initialize v0 array of distances
    SET @v0 = ''
    SET @j = 1

    WHILE (@j <= @tLen) BEGIN
        SET @v0 = @v0 + NCHAR(CASE WHEN @j > @max THEN @max ELSE @j END)
        SET @j = @j + 1
    END

    SET @jOffset = @max - @lenDiff
    SET @i = 1

    WHILE (@i <= @sLen) BEGIN
        SET @distance = @i
        SET @diag = @i - 1
        SET @sChar = SUBSTRING(@s, @i, 1)
             -- no need to look beyond window of upper left diagonal (@i) + @max cells
             -- and the lower right diagonal (@i - @lenDiff) - @max cells
        SET @j = CASE WHEN @i <= @jOffset THEN 1 ELSE @i - @jOffset END
        SET @jEnd = CASE WHEN @i + @max >= @tLen THEN @tLen ELSE @i + @max END

        WHILE (@j <= @jEnd) BEGIN
            -- at this point, @distance holds the previous value (the cell above if we were using an m by n matrix)
            SET @left = UNICODE(SUBSTRING(@v0, @j, 1))
            SET @thisJ = @j

            SET @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1)) THEN @diag                    --match, no change
                     ELSE 1 + CASE WHEN @diag < @left AND @diag < @distance THEN @diag    --substitution
                                   WHEN @left < @distance THEN @left                    -- insertion
                                   ELSE @distance                                        -- deletion
                                   END
                     END
            SET @v0 = STUFF(@v0, @thisJ, 1, NCHAR(@distance))
            SET @diag = @left
            SET @j = case when (@distance > @max) AND (@thisJ = @i + @lenDiff) 
                then @jEnd + 2 
                else @thisJ + 1 end
        END
        SET @i = CASE WHEN @j > @jEnd + 1 THEN @sLen + 1 ELSE @i + 1 END
    END
    RETURN CASE WHEN @distance <= @max THEN @distance ELSE NULL END
END

My mods for Azure Synapse (changed to use SET instead of SELECT):

-- =============================================
-- Computes and returns the Levenshtein edit distance between two strings, i.e. the
-- number of insertion, deletion, and sustitution edits required to transform one
-- string to the other, or NULL if @max is exceeded. Comparisons use the case-
-- sensitivity configured in SQL Server (case-insensitive by default).
-- 
-- Based on Sten Hjelmqvist's "Fast, memory efficient" algorithm, described
-- at http://www.codeproject.com/Articles/13525/Fast-memory-efficient-Levenshtein-algorithm,
-- with some additional optimizations.
-- =============================================
CREATE FUNCTION [db0].[Levenshtein](
    @s nvarchar(4000)
  , @t nvarchar(4000)
  , @max int
)
RETURNS int
WITH SCHEMABINDING
AS
BEGIN
    DECLARE @distance int = 0 -- return variable
          , @v0 nvarchar(4000)-- running scratchpad for storing computed distances
          , @start int = 1      -- index (1 based) of first non-matching character between the two string
          , @i int, @j int      -- loop counters: i for s string and j for t string
          , @diag int          -- distance in cell diagonally above and left if we were using an m by n matrix
          , @left int          -- distance in cell to the left if we were using an m by n matrix
          , @sChar nchar      -- character at index i from s string
          , @thisJ int          -- temporary storage of @j to allow SELECT combining
          , @jOffset int      -- offset used to calculate starting value for j loop
          , @jEnd int          -- ending value for j loop (stopping point for processing a column)
          -- get input string lengths including any trailing spaces (which SQL Server would otherwise ignore)
          , @sLen int = datalength(@s) / datalength(left(left(@s, 1) + '.', 1))    -- length of smaller string
          , @tLen int = datalength(@t) / datalength(left(left(@t, 1) + '.', 1))    -- length of larger string
          , @lenDiff int      -- difference in length between the two strings
    -- if strings of different lengths, ensure shorter string is in s. This can result in a little
    -- faster speed by spending more time spinning just the inner loop during the main processing.
    IF (@sLen > @tLen) BEGIN
        SET @v0 = @s
        SET @i = @sLen -- temporarily use v0 for swap
        SET @s = @t
        SET @sLen = @tLen
        SET @t = @v0
        SET @tLen = @i
    END
    SET @max = ISNULL(@max, @tLen)
    SET @lenDiff = @tLen - @sLen

    IF @lenDiff > @max RETURN NULL

    -- suffix common to both strings can be ignored
    WHILE(@sLen > 0 AND SUBSTRING(@s, @sLen, 1) = SUBSTRING(@t, @tLen, 1))
        SET @sLen = @sLen - 1
        SET @tLen = @tLen - 1

    IF (@sLen = 0) RETURN @tLen

    -- prefix common to both strings can be ignored
    WHILE (@start < @sLen AND SUBSTRING(@s, @start, 1) = SUBSTRING(@t, @start, 1)) 
        SET @start = @start + 1
    IF (@start > 1) BEGIN
        SET @sLen = @sLen - (@start - 1)
        SET @tLen = @tLen - (@start - 1)

        -- if all of shorter string matches prefix and/or suffix of longer string, then
        -- edit distance is just the delete of additional characters present in longer string
        IF (@sLen <= 0) RETURN @tLen

        SET @s = SUBSTRING(@s, @start, @sLen)
        SET @t = SUBSTRING(@t, @start, @tLen)
    END

    -- initialize v0 array of distances
    SET @v0 = ''
    SET @j = 1

    WHILE (@j <= @tLen) BEGIN
        SET @v0 = @v0 + NCHAR(CASE WHEN @j > @max THEN @max ELSE @j END)
        SET @j = @j + 1
    END

    SET @jOffset = @max - @lenDiff
    SET @i = 1

    WHILE (@i <= @sLen) BEGIN
        SET @distance = @i
        SET @diag = @i - 1
        SET @sChar = SUBSTRING(@s, @i, 1)
             -- no need to look beyond window of upper left diagonal (@i) + @max cells
             -- and the lower right diagonal (@i - @lenDiff) - @max cells
        SET @j = CASE WHEN @i <= @jOffset THEN 1 ELSE @i - @jOffset END
        SET @jEnd = CASE WHEN @i + @max >= @tLen THEN @tLen ELSE @i + @max END

        WHILE (@j <= @jEnd) BEGIN
            -- at this point, @distance holds the previous value (the cell above if we were using an m by n matrix)
            SET @left = UNICODE(SUBSTRING(@v0, @j, 1))
            SET @thisJ = @j

            SET @distance = 
                CASE WHEN (@sChar = SUBSTRING(@t, @j, 1)) THEN @diag                    --match, no change
                     ELSE 1 + CASE WHEN @diag < @left AND @diag < @distance THEN @diag    --substitution
                                   WHEN @left < @distance THEN @left                    -- insertion
                                   ELSE @distance                                        -- deletion
                                   END
                     END
            SET @v0 = STUFF(@v0, @thisJ, 1, NCHAR(@distance))
            SET @diag = @left
            SET @j = case when (@distance > @max) AND (@thisJ = @i + @lenDiff) 
                then @jEnd + 2 
                else @thisJ + 1 end
        END
        SET @i = CASE WHEN @j > @jEnd + 1 THEN @sLen + 1 ELSE @i + 1 END
    END
    RETURN CASE WHEN @distance <= @max THEN @distance ELSE NULL END
END
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文