如何检查有向图是否是非循环的?

发布于 2024-07-14 12:25:07 字数 47 浏览 10 评论 0原文

如何检查有向图是否是非循环的? 以及该算法是如何调用的? 我希望能提供参考。

How do I check if a directed graph is acyclic? And how is the algorithm called? I would appreciate a reference.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(12

深空失忆 2024-07-21 12:25:07

我会尝试对图进行拓扑排序,如果不能,那么它就有循环。

I would try to sort the graph topologically, and if you can't, then it has cycles.

不气馁 2024-07-21 12:25:07

进行简单的深度优先搜索不足以不足以找到循环。 在 DFS 中可以多次访问一个节点而不存在循环。 根据您开始的位置,您也可能不会访问整个图表。

您可以按如下方式检查图形的连接组件中的循环。 找到一个只有出边的节点。 如果不存在这样的节点,则存在环路。 在该节点上启动 DFS。 遍历每条边时,检查该边是否指向堆栈中已有的节点。 这表明循环的存在。 如果找不到这样的边,则该连接组件中不存在循环。

正如 Rutger Prins 指出的那样,如果您的图未连接,则需要对每个连接的组件重复搜索。

作为参考,Tarjan 的强连通分量算法密切相关。 它还将帮助您找到循环,而不仅仅是报告它们是否存在。

Doing a simple depth-first-search is not good enough to find a cycle. It is possible to visit a node multiple times in a DFS without a cycle existing. Depending on where you start, you also might not visit the entire graph.

You can check for cycles in a connected component of a graph as follows. Find a node which has only outgoing edges. If there is no such node, then there is a cycle. Start a DFS at that node. When traversing each edge, check whether the edge points back to a node already on your stack. This indicates the existence of a cycle. If you find no such edge, there are no cycles in that connected component.

As Rutger Prins points out, if your graph is not connected, you need to repeat the search on each connected component.

As a reference, Tarjan's strongly connected component algorithm is closely related. It will also help you find the cycles, not just report whether they exist.

林空鹿饮溪 2024-07-21 12:25:07

算法简介(第二版)一书中的引理 22.11 指出:

有向图 G 是非循环的当且仅当 G 的深度优先搜索没有产生后边

Lemma 22.11 on the Book Introduction to Algorithms (Second Edition) states that:

A directed graph G is acyclic if and only if a depth-first search of G yields no back edges

萝莉病 2024-07-21 12:25:07

方案一Kahn算法检查循环。 主要思想:维护一个队列,将入度为零的节点添加到队列中。 然后将节点一一剥离,直到队列为空。 检查是否存在任何节点的入边。

解决方案2Tarjan算法检查强连通分量。

解决方案3DFS。 使用整数数组来标记节点的当前状态:
即0——表示该节点之前未被访问过。
-1——表示该节点已被访问,并且其子节点正在被访问。
1——表示该节点已被访问,并且已完成。
所以如果一个节点在进行DFS时状态为-1,则说明一定存在环路。

Solution1Kahn algorithm to check cycle. Main idea: Maintain a queue where node with zero in-degree will be added into queue. Then peel off node one by one until queue is empty. Check if any node's in-edges are existed.

Solution2: Tarjan algorithm to check Strong connected component.

Solution3: DFS. Use integer array to tag current status of node:
i.e. 0 --means this node hasn't been visited before.
-1 -- means this node has been visited, and its children nodes are being visited.
1 -- means this node has been visited, and it's done.
So if a node's status is -1 while doing DFS, it means there must be a cycle existed.

陌伤浅笑 2024-07-21 12:25:07

刚刚在谷歌面试中遇到了这个问题。

拓扑排序

你可以尝试拓扑排序,即 O(V + E),其中 V 是顶点数,E 是边数。 当且仅当可以做到这一点时,有向图才是无环的。

递归叶删除

递归地删除叶节点,直到没有剩下的,如果剩下多个节点,则有一个循环。 除非我弄错了,否则这是 O(V^2 + VE)。

DFS 式 ~ O(n + m)

然而,一种高效的 DFS 式算法,最坏情况 O(V + E) 是:

function isAcyclic (root) {
    const previous = new Set();

    function DFS (node) {
        previous.add(node);

        let isAcyclic = true;
        for (let child of children) {
            if (previous.has(child) || DFS(child)) {
                isAcyclic = false;
                break;
            }
        }

        previous.delete(node);

        return isAcyclic;
    }

    return DFS(root);
}

Just had this question in a Google interview.

Topological Sort

You can try to sort topologically, which is O(V + E) where V is the number of vertices, and E is the number of edges. A directed graph is acyclic if and only if this can be done.

Recursive Leaf Removal

The recursively remove leaf nodes until there are none left, and if there's more than a single node left you've got a cycle. Unless I'm mistaken, this is O(V^2 + VE).

DFS-style ~ O(n + m)

However, an efficient DFS-esque algorithm, worst case O(V + E), is:

function isAcyclic (root) {
    const previous = new Set();

    function DFS (node) {
        previous.add(node);

        let isAcyclic = true;
        for (let child of children) {
            if (previous.has(child) || DFS(child)) {
                isAcyclic = false;
                break;
            }
        }

        previous.delete(node);

        return isAcyclic;
    }

    return DFS(root);
}
追星践月 2024-07-21 12:25:07

ShuggyCoUk 给出的解决方案是不完整的,因为它可能没有检查所有节点。


def isDAG(nodes V):
    while there is an unvisited node v in V:
        bool cycleFound = dfs(v)
        if cyclefound:
            return false
    return true

时间复杂度为 O(n+m) 或 O(n^2)

The solution given by ShuggyCoUk is incomplete because it might not check all nodes.


def isDAG(nodes V):
    while there is an unvisited node v in V:
        bool cycleFound = dfs(v)
        if cyclefound:
            return false
    return true

This has timecomplexity O(n+m) or O(n^2)

氛圍 2024-07-21 12:25:07

我知道这是一个老话题,但对于未来的搜索者,这里是我创建的 C# 实现(没有声称它是最有效的!)。 这样做的目的是使用一个简单的整数来标识每个节点。 只要你的节点对象散列和等于正确,你就可以按照你喜欢的方式装饰它。

对于非常深的图,这可能会产生很高的开销,因为它在深度的每个节点上创建一个哈希集(它们在广度上被破坏)。

您输入要搜索的节点以及到达该节点的路径。

  • 对于具有单个根节点的图,您发送该节点和一个空哈希集
  • 对于具有多个根节点的图,您将其包装在这些节点上的 foreach 中,并为每次迭代传递一个新的空哈希集
  • 当检查低于任何值的循环时给定节点,只需将该节点与空哈希集一起传递

    private bool FindCycle(int 节点, HashSet 路径) 
      { 
    
          if (路径.包含(节点)) 
              返回真; 
    
          var ExtendedPath = new HashSet(path) {node}; 
    
          foreach(GetChildren(节点)中的 var child) 
          { 
              if (FindCycle(子级, 扩展路径)) 
                  返回真; 
          } 
    
          返回假; 
      } 
      

I know this is an old topic but for future searchers here is a C# implementation I created (no claim that it's most efficient!). This is designed to use a simple integer to identify each node. You can decorate that however you like provided your node object hashes and equals properly.

For Very deep graphs this may have high overhead, as it creates a hashset at each node in depth (they are destroyed over breadth).

You input the node from which you want to search and the path take to that node.

  • For a graph with a single root node you send that node and an empty hashset
  • For a graph having multiple root nodes you wrap this in a foreach over those nodes and pass a new empty hashset for each iteration
  • When checking for cycles below any given node, just pass that node along with an empty hashset

    private bool FindCycle(int node, HashSet<int> path)
    {
    
        if (path.Contains(node))
            return true;
    
        var extendedPath = new HashSet<int>(path) {node};
    
        foreach (var child in GetChildren(node))
        {
            if (FindCycle(child, extendedPath))
                return true;
        }
    
        return false;
    }
    
随心而道 2024-07-21 12:25:07

在做DFS时不应该有任何后边。在做DFS时跟踪已经访问过的节点,如果在当前节点和现有节点之间遇到边,则图有循环。

There should not be any back edge while doing DFS.Keep track of already visited nodes while doing DFS,if you encounter a edge between current node and existing node,then graph has cycle.

白况 2024-07-21 12:25:07

这里有一个快速代码来查找图是否有循环:

func isCyclic(G : Dictionary<Int,Array<Int>>,root : Int , var visited : Array<Bool>,var breadCrumb : Array<Bool>)-> Bool
{

    if(breadCrumb[root] == true)
    {
        return true;
    }

    if(visited[root] == true)
    {
        return false;
    }

    visited[root] = true;

    breadCrumb[root] = true;

    if(G[root] != nil)
    {
        for child : Int in G[root]!
        {
            if(isCyclic(G,root : child,visited : visited,breadCrumb : breadCrumb))
            {
                return true;
            }
        }
    }

    breadCrumb[root] = false;
    return false;
}


let G = [0:[1,2,3],1:[4,5,6],2:[3,7,6],3:[5,7,8],5:[2]];

var visited = [false,false,false,false,false,false,false,false,false];
var breadCrumb = [false,false,false,false,false,false,false,false,false];




var isthereCycles = isCyclic(G,root : 0, visited : visited, breadCrumb : breadCrumb)

想法是这样的:一个普通的 dfs 算法,带有一个用于跟踪访问节点的数组,以及一个附加数组,该数组用作导致当前节点的节点的标记节点,这样当我们对节点执行 dfs 时,我们将标记数组中的相应项设置为 true ,这样当遇到已访问过的节点时,我们检查标记数组中其相应项是否为 true ,如果为 true那么它是让自己的节点之一
(因此是一个循环),诀窍是每当节点的 dfs 返回时,我们将其相应的标记设置回 false ,这样,如果我们从另一条路线再次访问它,我们就不会被愚弄。

here is a swift code to find if a graph has cycles :

func isCyclic(G : Dictionary<Int,Array<Int>>,root : Int , var visited : Array<Bool>,var breadCrumb : Array<Bool>)-> Bool
{

    if(breadCrumb[root] == true)
    {
        return true;
    }

    if(visited[root] == true)
    {
        return false;
    }

    visited[root] = true;

    breadCrumb[root] = true;

    if(G[root] != nil)
    {
        for child : Int in G[root]!
        {
            if(isCyclic(G,root : child,visited : visited,breadCrumb : breadCrumb))
            {
                return true;
            }
        }
    }

    breadCrumb[root] = false;
    return false;
}


let G = [0:[1,2,3],1:[4,5,6],2:[3,7,6],3:[5,7,8],5:[2]];

var visited = [false,false,false,false,false,false,false,false,false];
var breadCrumb = [false,false,false,false,false,false,false,false,false];




var isthereCycles = isCyclic(G,root : 0, visited : visited, breadCrumb : breadCrumb)

The idea is like this : a normal dfs algorithm with an array to keep track of visited nodes , and an additional array which serves as a marker for the nodes that led to the current node,so that when ever we execute a dfs for a node we set its corresponding item in the marker array as true ,so that when ever an already visited node encountered we check if its corresponding item in the marker array is true , if its true then its one of the nodes that let to itself
(hence a cycle) , and the trick is whenever a dfs of a node returns we set its corresponding marker back to false , so that if we visited it again from another route we don't get fooled .

有木有妳兜一样 2024-07-21 12:25:07

这是我的 剥离叶子节点算法的 ruby​​ 实现< /a>.

def detect_cycles(initial_graph, number_of_iterations=-1)
    # If we keep peeling off leaf nodes, one of two things will happen
    # A) We will eventually peel off all nodes: The graph is acyclic.
    # B) We will get to a point where there is no leaf, yet the graph is not empty: The graph is cyclic.
    graph = initial_graph
    iteration = 0
    loop do
        iteration += 1
        if number_of_iterations > 0 && iteration > number_of_iterations
            raise "prevented infinite loop"
        end

        if graph.nodes.empty?
            #puts "the graph is without cycles"
            return false
        end

        leaf_nodes = graph.nodes.select { |node| node.leaving_edges.empty? }

        if leaf_nodes.empty?
            #puts "the graph contain cycles"
            return true
        end

        nodes2 = graph.nodes.reject { |node| leaf_nodes.member?(node) }
        edges2 = graph.edges.reject { |edge| leaf_nodes.member?(edge.destination) }
        graph = Graph.new(nodes2, edges2)
    end
    raise "should not happen"
end

Here is my ruby implementation of the peel off leaf node algorithm.

def detect_cycles(initial_graph, number_of_iterations=-1)
    # If we keep peeling off leaf nodes, one of two things will happen
    # A) We will eventually peel off all nodes: The graph is acyclic.
    # B) We will get to a point where there is no leaf, yet the graph is not empty: The graph is cyclic.
    graph = initial_graph
    iteration = 0
    loop do
        iteration += 1
        if number_of_iterations > 0 && iteration > number_of_iterations
            raise "prevented infinite loop"
        end

        if graph.nodes.empty?
            #puts "the graph is without cycles"
            return false
        end

        leaf_nodes = graph.nodes.select { |node| node.leaving_edges.empty? }

        if leaf_nodes.empty?
            #puts "the graph contain cycles"
            return true
        end

        nodes2 = graph.nodes.reject { |node| leaf_nodes.member?(node) }
        edges2 = graph.edges.reject { |edge| leaf_nodes.member?(edge.destination) }
        graph = Graph.new(nodes2, edges2)
    end
    raise "should not happen"
end
第几種人 2024-07-21 12:25:07

这是我的伪代码实现:

bool Acyclacity_Test
   InitColor() //Sets to WHITE every vertex
   while there is a node v in V:
      if (v.color == WHITE) then
         tmp = Aux_Acy(v);
         if ( not tmp ) return false
   return true
END

bool Aux_Acy(u)
   u.color = GREY
   for each node v in Adj(u)
       if(v.color == GREY) return false
       else if(v.color == WHITE) tmp = Aux_Acy(v)
       if(!tmp) return false;
   u.color = BLACK
   return true
END

Here my implementation in pseudocode:

bool Acyclacity_Test
   InitColor() //Sets to WHITE every vertex
   while there is a node v in V:
      if (v.color == WHITE) then
         tmp = Aux_Acy(v);
         if ( not tmp ) return false
   return true
END

bool Aux_Acy(u)
   u.color = GREY
   for each node v in Adj(u)
       if(v.color == GREY) return false
       else if(v.color == WHITE) tmp = Aux_Acy(v)
       if(!tmp) return false;
   u.color = BLACK
   return true
END
Smile简单爱 2024-07-21 12:25:07

您可以使用我的答案中的查找循环反转 https://stackoverflow.com/a/60196714/1763149

def is_acyclic(graph):
    return not has_cycle(graph)

You can use inversion of finding cycle from my answer here https://stackoverflow.com/a/60196714/1763149

def is_acyclic(graph):
    return not has_cycle(graph)
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文