Python 导入和提供可选功能的良好实践是什么?
我正在 github 上写一个软件。 它基本上是一个带有一些额外功能的托盘图标。 我想提供一段工作代码,而实际上不必让用户安装可选功能的本质依赖项,而且我实际上不想导入我不会使用的东西,所以我认为这样的代码将是“好的解决方案”:
---- IN LOADING FUNCTION ----
features = []
for path in sys.path:
if os.path.exists(os.path.join(path, 'pynotify')):
features.append('pynotify')
if os.path.exists(os.path.join(path, 'gnomekeyring.so')):
features.append('gnome-keyring')
#user dialog to ask for stuff
#notifications available, do you want them enabled?
dlg = ConfigDialog(features)
if not dlg.get_notifications():
features.remove('pynotify')
service_start(features ...)
---- SOMEWHERE ELSE ------
def service_start(features, other_config):
if 'pynotify' in features:
import pynotify
#use pynotify...
但是存在一些问题。 如果用户格式化他的计算机并安装最新版本的操作系统并重新部署此应用程序,则功能会突然消失而不会发出警告。 解决方案是将其显示在配置窗口上:
if 'pynotify' in features:
#gtk checkbox
else:
#gtk label reading "Get pynotify and enjoy notification pop ups!"
但是如果这是一台 Mac,我怎么知道我不会让用户徒劳无功地寻找他们永远无法满足的依赖项?
第二个问题是:
if os.path.exists(os.path.join(path, 'gnomekeyring.so')):
问题。 我能否确定该文件在所有 Linux 发行版中始终名为 gnomekeyring.so?
其他人如何测试这些功能? 基本的问题
try:
import pynotify
except:
pynotify = disabled
是代码是全局的,这些代码可能散落各处,即使用户不想要 pynotify....它还是会加载。
那么人们认为解决这个问题的最佳方法是什么?
I'm writing a piece of software over on github. It's basically a tray icon with some extra features. I want to provide a working piece of code without actually having to make the user install what are essentially dependencies for optional features and I don't actually want to import things I'm not going to use so I thought code like this would be "good solution":
---- IN LOADING FUNCTION ----
features = []
for path in sys.path:
if os.path.exists(os.path.join(path, 'pynotify')):
features.append('pynotify')
if os.path.exists(os.path.join(path, 'gnomekeyring.so')):
features.append('gnome-keyring')
#user dialog to ask for stuff
#notifications available, do you want them enabled?
dlg = ConfigDialog(features)
if not dlg.get_notifications():
features.remove('pynotify')
service_start(features ...)
---- SOMEWHERE ELSE ------
def service_start(features, other_config):
if 'pynotify' in features:
import pynotify
#use pynotify...
There are some issues however. If a user formats his machine and installs the newest version of his OS and redeploys this application, features suddenly disappear without warning. The solution is to present this on the configuration window:
if 'pynotify' in features:
#gtk checkbox
else:
#gtk label reading "Get pynotify and enjoy notification pop ups!"
But if this is say, a mac, how do I know I'm not sending the user on a wild goose chase looking for a dependency they can never fill?
The second problem is the:
if os.path.exists(os.path.join(path, 'gnomekeyring.so')):
issue. Can I be sure that the file is always called gnomekeyring.so across all the linux distros?
How do other people test these features? The problem with the basic
try:
import pynotify
except:
pynotify = disabled
is that the code is global, these might be littered around and even if the user doesn't want pynotify....it's loaded anyway.
So what do people think is the best way to solve this problem?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(7)
try:
方法不需要是全局的——它可以在任何范围内使用,因此模块可以在运行时“延迟加载”。 例如:当您的脚本运行时,不会尝试加载
external_module
。 第一次调用foo()
时,external_module
会(如果可用)加载并插入到函数的本地作用域中。 对foo()
的后续调用会将external_module
重新插入其作用域,而无需重新加载模块。一般来说,最好让 Python 处理导入逻辑——它已经这么做了一段时间了。 :-)
The
try:
method does not need to be global — it can be used in any scope and so modules can be "lazy-loaded" at runtime. For example:When your script is run, no attempt will be made to load
external_module
. The first timefoo()
is called,external_module
is (if available) loaded and inserted into the function's local scope. Subsequent calls tofoo()
reinsertexternal_module
into its scope without needing to reload the module.In general, it's best to let Python handle import logic — it's been doing it for a while. :-)
您可能想看看 imp 模块,它基本上做了什么您在上面手动执行。 因此,您可以首先使用
find_module()
查找模块,然后通过load_module()
加载它或简单地导入它(检查配置后)。顺便说一句,如果使用
except:
我总是会向其中添加特定的异常(此处为ImportError
),以免意外捕获不相关的错误。You might want to have a look at the imp module, which basically does what you do manually above. So you can first look for a module with
find_module()
and then load it viaload_module()
or by simply importing it (after checking the config).And btw, if using
except:
I always would add the specific exception to it (hereImportError
) to not accidentally catch unrelated errors.另一种选择是使用
@contextmanager
和with
。 在这种情况下,您事先并不知道需要哪些依赖项:用法:
输出:
在这里,您应该在
with
之后立即定义所有导入。 第一个未安装的模块将抛出 ImportError,该错误由optical_dependencies
捕获。 根据您想要如何处理此错误,它将忽略它、打印警告或再次引发它。仅当安装了所有模块时,整个代码才会运行。
Another option is to use
@contextmanager
andwith
. In this situation, you do not know beforehand which dependencies are needed:Usage:
Output:
Here, you should define all your imports immediately after
with
. The first module which is not installed will throw ImportError, which is caught byoptional_dependencies
. Depending on how you want to handle this error, it will either ignore it, print a warning, or raise it again.The entire code will only run if all the modules are installed.
不确定这是否是一个好的做法,但我创建了一个执行可选导入(使用 importlib )和错误处理的函数:
如果可选模块不可用,用户至少会了解什么去做。 例如,
这种方法的主要缺点是您的导入必须内嵌完成,并且不能全部位于文件的顶部。 因此,使用此函数的轻微改编可能被认为是更好的做法(假设您正在导入函数等):
现在,您可以使用其余的导入进行导入,并且仅在以下情况下才会引发错误导入失败的函数实际被使用。 例如
PS:抱歉回复晚了!
Not sure if this is good practice, but I created a function that does the optional import (using
importlib
) and error handling:If an optional module is not available, the user will at least get the idea what to do. E.g.
The main disadvantage with this approach is that your imports have to be done in-line and are not all on the top of your file. Therefore, it might be considered better practice to use a slight adaptation of this function (assuming that you are importing a function or the like):
Now, you can make the imports with the rest of your imports and the error will only be raised when the function that failed to import is actually used. E.g.
PS: sorry for the late answer!
这是一个生产级解决方案,使用
importlib
和 Pandas 的 import_Optional_dependency as suggest by @dre-hh用法:忽略错误(
error="ignore"
,默认行为)假设我们只想在需要时运行某些代码库存在:
如果依赖项
pydantic
或skelarn
不存在,则类AccuracyCalculator
将不会被定义,并且打印语句将不会运行。用法: raise ImportError (
error="raise"
)或者,如果任何模块不存在,您可以引发错误:
输出:
用法:打印警告 (
error="warn")
或者,如果模块不存在,您可以打印警告。
输出:
在这里,我们确保对于每个丢失的模块只打印一个警告,否则每次尝试导入时都会收到警告。
这对于 Python 库非常有用,您可能会多次尝试导入相同的可选依赖项,但只想看到一个警告。
您可以传递
warn_every_time=True
以在尝试导入时始终打印警告。Here's a production-grade solution, using
importlib
and Pandas's import_optional_dependency as suggested by @dre-hhUsage: ignore errors (
error="ignore"
, default behavior)Suppose we want to run certain code only if the required libraries exists:
If either dependencies
pydantic
orskelarn
do not exist, then the classAccuracyCalculator
will not be defined and the print statement will not run.Usage: raise ImportError (
error="raise"
)Alternatively, you can raise a error if any module does not exist:
Output:
Usage: print a warning (
error="warn"
)Alternatively, you can print a warning if the module does not exist.
Output:
Here, we ensure that only one warning is printed for each missing module, otherwise you would get a warning each time you try to import.
This is very useful for Python libraries where you might try to import the same optional dependencies many times, and only want to see one Warning.
You can pass
warn_every_time=True
to always print the warning when you try to import.我真的很高兴能分享我想出的这项新技术来处理可选依赖项!
这个概念是在使用卸载的软件包而不导入时产生错误。
只需在导入之前添加一个调用即可。 您根本不需要更改任何代码。 导入时不再使用
try:
。 编写测试时不再使用条件skip
装饰器。主要组件
自定义异常,如果在一个最小代码示例
包
上述技术有一些缺点,我的包已修复。
它是开源的、轻量级的,并且没有依赖项!
与上面示例的一些关键区别:
generalimport
,它返回一个ImportCatcher
ImportCatcher
保存名称、范围和捕获的名称sys.meta_path
中GitHub 上的 Generalimport
pip install genericimport
最小示例
GitHub 上的自述文件 更深入
I'm really excited to share this new technique I came up with to handle optional dependencies!
The concept is to produce the error when the uninstalled package is used not imported.
Just add a single call before your imports. You don't need to change any code at all. No more using
try:
when importing. No more using conditionalskip
decorators when writing tests.Main components
Minimal Code Example
Package
The technique above has some shortcomings that my package fixes.
It's open-source, lightweight, and has no dependencies!
Some key differences to the example above:
generalimport
which returns anImportCatcher
ImportCatcher
holds names, scope, and caught namessys.meta_path
Generalimport on GitHub
pip install generalimport
Minimal example
The readme on GitHub goes more in-depth
处理不同功能的不同依赖关系问题的一种方法是将可选功能实现为插件。 这样,用户可以控制应用程序中激活哪些功能,但不负责自己跟踪依赖项。 然后在安装每个插件时处理该任务。
One way to handle the problem of different dependencies for different features is to implement the optional features as plugins. That way the user has control over which features are activated in the app but isn't responsible for tracking down the dependencies herself. That task then gets handled at the time of each plugin's installation.