RDBMS中模糊集的去模糊化过程
我有一个存储所有值的表..例如 x1、x2、x3 确定模糊集。 使用数学函数将隶属度分配给每个人,分别为低、中、高。
我的规则 1 规定,如果 x1 为高且 x2 为中,则输出概率为 z。 然后我用 min{x1,x2} 来评估规则。 规则 2 规定,如果 x2 为高或 x3 为中,则输出为 max{x2,x3}。
现在为了去模糊化,我对规则结果进行聚合来找出 2 个规则的输出。 我为每条规则定义了 x1 x2 x3 的所有隶属度(0 到 1)。
如何去模糊化?
I have a table that stores all values..eg x1, x2, x3 which determines fuzzy sets. Degree of membership is assigned to each using mathematical functions for Low, Med, High.
My rule 1 states that if x1 is high AND x2 is medium then probability of output is z.
I then take min{x1,x2} to evaluate the rule. Rule 2 states that if x2 is high OR x3 is medium then output is max{x2,x3}.
Now to defuzzify I take aggregation of rule consequences to find out the output of the 2 rules. I have all degrees of membership defined (0 to 1) for x1 x2 x3 for each rule.
How do I defuzzify?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
好吧,首先,你使用的是概率逻辑还是模糊逻辑。 虽然相似,但它们并不相同。 如果您确实在这里对概率进行建模,那么您需要通过贝叶斯定理将其视为条件概率。
如果这些确实是模糊真值,那么您需要有一个我们需要知道的集合成员模型。
Okay, first of all, are you using a probabilistic logic or a fuzzy logic. While similar, they're not identical. If you're really modeling probabilities here, then you need to look into this via Bayes Theorem as a conditional probability.
If these are really fuzzy truth values, then you need to have a model of set-membership, which we need to know.