Pre RTree 步骤:将一组点划分为每个包含一个点的矩形区域

发布于 2024-07-13 20:58:52 字数 232 浏览 9 评论 0 原文

给定我当前的位置(纬度,经度),我想快速找到兴趣点问题中的最近邻居。 因此我打算使用 R-Tree 数据库,它可以快速查找。 然而,当然,首先必须填充数据库。 因此,我需要确定覆盖该区域的矩形区域,其中每个区域包含一个兴趣点。

我的问题是如何预处理数据,即如何将区域细分为这些矩形子区域? (我想要矩形区域,因为它们很容易添加到 RTree - 与更一般的 Voronoi 区域相比)。

/约翰

given my current position (lat,long) I want to quickly find the nearest neighbor in a points of interest problem. Thus I intend to use an R-Tree database, which allows for quick lookup. However, first the database must be populated - of course. Therefore, I need to determine the rectangular regions that covers the area, where each region contains one point of interest.

My question is how do I preprocess the data, i.e. how do I subdivide the area into these rectangular sub-regions? (I want rectangular regions because they are easily added to the RTree - in contrast to more general Voronoi regions).

/John

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

笙痞 2024-07-20 20:58:52

编辑:下面的方法有效,但忽略了 R 树的关键特征——R 树节点的分裂行为被明确定义,并维护平衡树(通过类似 B 树的方式)特性)。 所以事实上,您所要做的就是:

  1. 选择每页矩形的最大数量
  2. 创建种子矩形(使用彼此距离最远的点、质心等)。
  3. 对于每个点,选择一个矩形将其放入
  4. 如果它已经落入一个矩形中,请将其放入其中
  5. 如果没有,则扩展需要扩展最少的矩形(测量“最少”出口的不同方法 - 区域有效)
  6. 如果适用多个矩形 - 根据其填充程度或其他启发式选择一个
  7. 如果发生溢出 - 使用二次分割来移动事物...
  8. 等等,直接使用教科书上的 R 树算法。

我认为下面的方法可以找到你的初始种子矩形; 但您不想以这种方式填充整个 R 树。 一直进行拆分和重新平衡可能会有点昂贵,因此您可能希望使用下面的 KD 方法来完成大部分工作; 只是不是所有的工作。


KD 方法:将所有内容都包含在一个矩形中。

如果矩形中的点数> 阈值,沿 D 方向扫描,直到覆盖一半的点。

将分割点左右(或上方和下方)分成矩形。

在新矩形上递归调用相同的过程,并使用下一个方向(如果您从左到右,现在将从上到下,反之亦然)。

与另一张海报提供的划分为正方形的方法相比,这种方法的优点是它可以更好地适应倾斜的点分布。

Edit: The below approach works, but ignores the critical feature of R-trees -- that The splitting behavior of R-tree nodes is well defined, and maintains a balanced tree (through B-tree-like properties). So in fact, all you have to do is:

  1. Pick the maximum number of rectangles per page
  2. Create seed rectangles (use points furthest away from each other, centroids, whatever).
  3. For each point, choose a rectangle to put it into
    1. If it already falls into a single rectangle, put it in there
    2. If it does not, extend the rectangle that needs to be extended least (different ways to measure "least" exits -- area works)
    3. If multiple rectangles apply -- choose one based on how full it is, or some other heuristic
  4. If overflow occurs -- use the quadratic split to move things around...
  5. And so on, using R-tree algorithms straight out of a text book.

I think the method below is ok for finding your initial seed rectangles; but you don't want to populate your whole R-tree that way. Doing the splits and rebalancing all the time can be a bit expensive, so you will probably want to do a decent chunk of the work with the KD approach below; just not all of the work.


The KD approach: enclose everything in a rectangle.

If the number of points in the rectangle is > threshold, sweep in direction D until you cover half the points.

Divide into rectangles left and right (or above and below) the splitting point).

Call the same procedure recursively on the new rectangles, with the next direction (if you were going left to right, you will now go top to bottom, and vice versa).

The advantage this has over the divide-into-squares approach offered by another poster is that it accommodates skewed point distributions better.

骷髅 2024-07-20 20:58:52

Oracle Spatial Cartridge 文档描述了可以做你想做的事情的曲面细分算法。 简而言之:

  • 如果正方形包含 1 个点,则将所有点包含在正方形中
  • 索引正方形
  • -如果正方形不包含点,则
  • -如果正方形包含多于 1 个点, 则忽略它
    • 将正方形分成 4 个相等的正方形,并对每个新正方形重复分析

结果应如下所示:
替代文本 http://download- uk.oracle.com/docs/cd/A64702_01/doc/cartridg.805/a53264/sdo_ina5.gif

Oracle Spatial Cartridge documentation describes tessellation algorithm that can do what you want. In short:

  • enclose all your points in square
  • if square contains 1 point - index square
  • if square does not contain points - ignore it
  • if square contains more then 1 point
    • split square into 4 equal squares and repeat analysis for each new square

Result should be something like this:
alt text http://download-uk.oracle.com/docs/cd/A64702_01/doc/cartridg.805/a53264/sdo_ina5.gif

思念满溢 2024-07-20 20:58:52

我认为你在问题陈述中遗漏了一些东西。 假设有 N 个点 (x, y),每个点都有唯一的 x 和 y 坐标。 您可以将您的区域划分为 N 个矩形,然后将其划分为 N 个垂直列。 但这并不能帮助你轻松解决最近的 POI 问题,不是吗? 所以我认为你正在考虑一些关于矩形结构的事情,但你还没有阐明。

插图:

| | | | |5| | |
|1| | | | |6| |
| | |3| | | | |
| | | | | | | |
| |2| | | | | |
| | | | | | |7|
| | | |4| | | |

数字是 POI,垂直线显示细分为 7 个矩形区域。 但显然细分中并没有太多“有趣”的信息。 关于细分还有一些您没有提到的附加标准吗?

I think you a missing something in the problem statement. Assume you have N points (x, y) such that every point has a unique x- and y-coordinate. You can divide your area into N rectangles then by just dividing it into N vertical columns. But that does not help you to solve the nearest POI problem easily, does it? So I think you are thinking about something about the rectangle structure which you haven't articulated yet.

Illustration:

| | | | |5| | |
|1| | | | |6| |
| | |3| | | | |
| | | | | | | |
| |2| | | | | |
| | | | | | |7|
| | | |4| | | |

The numbers are POIs and the vertical lines show a subdivision into 7 rectangular areas. But clearly there isn't much "interesting" information in the subdivision. Is there some additional criterion on the subdivision which you haven't mentioned?

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文