使用 SHA1 和 RSA 与 java.security.Signature 对比 MessageDigest 和 Cipher

发布于 2024-07-13 16:34:15 字数 2536 浏览 8 评论 0原文

我试图了解 Java java.security.Signature 类的作用。 如果我计算 SHA1 消息摘要,然后使用 RSA 加密该摘要,我会得到与要求 Signature 类签署相同内容不同的结果:

// Generate new key
KeyPair keyPair = KeyPairGenerator.getInstance("RSA").generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();
String plaintext = "This is the message being signed";

// Compute signature
Signature instance = Signature.getInstance("SHA1withRSA");
instance.initSign(privateKey);
instance.update((plaintext).getBytes());
byte[] signature = instance.sign();

// Compute digest
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] digest = sha1.digest((plaintext).getBytes());

// Encrypt digest
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.ENCRYPT_MODE, privateKey);
byte[] cipherText = cipher.doFinal(digest);

// Display results
System.out.println("Input data: " + plaintext);
System.out.println("Digest: " + bytes2String(digest));
System.out.println("Cipher text: " + bytes2String(cipherText));
System.out.println("Signature: " + bytes2String(signature));

结果(例如):

输入数据:这是正在签名的消息
摘要:62b0a9ef15461c82766fb5bdaae9edbe4ac2e067
密文:057dc0d2f7f54acc95d3cf5cba9f944619394711003bdd12...
签名:7177c74bbbb871cc0af92e30d2808ebae146f25d3fd8ba1622...

我一定对 Signature 的作用有一个根本性的误解 - 我已经追踪过它,它似乎正在对 MessageDigest 对象调用 update ,按照我的预期将算法设置为 SHA1,然后获取摘要,然后进行加密。 是什么导致结果不同?

编辑:

列奥尼达斯让我检查签名方案是否应该按照我的想法进行。 RFC 中定义了两种类型的签名:

第一个 (PKCS1) 是我上面描述的。 它使用哈希函数创建摘要,然后使用私钥对结果进行加密。

第二种算法使用随机盐值,更加安全但具有不确定性。 如果重复使用相同的密钥,上面代码生成的签名不会改变,所以我认为它不可能是PSS。

编辑:

这是我使用的bytes2string方法:

private static String bytes2String(byte[] bytes) {
    StringBuilder string = new StringBuilder();
    for (byte b : bytes) {
        String hexString = Integer.toHexString(0x00FF & b);
        string.append(hexString.length() == 1 ? "0" + hexString : hexString);
    }
    return string.toString();
}

I'm trying to understand what the Java java.security.Signature class does. If I compute an SHA1 message digest, and then encrypt that digest using RSA, I get a different result to asking the Signature class to sign the same thing:

// Generate new key
KeyPair keyPair = KeyPairGenerator.getInstance("RSA").generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();
String plaintext = "This is the message being signed";

// Compute signature
Signature instance = Signature.getInstance("SHA1withRSA");
instance.initSign(privateKey);
instance.update((plaintext).getBytes());
byte[] signature = instance.sign();

// Compute digest
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] digest = sha1.digest((plaintext).getBytes());

// Encrypt digest
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.ENCRYPT_MODE, privateKey);
byte[] cipherText = cipher.doFinal(digest);

// Display results
System.out.println("Input data: " + plaintext);
System.out.println("Digest: " + bytes2String(digest));
System.out.println("Cipher text: " + bytes2String(cipherText));
System.out.println("Signature: " + bytes2String(signature));

Results in (for example):

Input data: This is the message being signed
Digest: 62b0a9ef15461c82766fb5bdaae9edbe4ac2e067
Cipher text: 057dc0d2f7f54acc95d3cf5cba9f944619394711003bdd12...
Signature: 7177c74bbbb871cc0af92e30d2808ebae146f25d3fd8ba1622...

I must have a fundamental misunderstanding of what Signature is doing - I've traced through it, and it appears to be calling update on a MessageDigest object, with the algorithm set to SHA1 as I would expect, then getting the digest, then doing the encryption. What's making the results differ?

EDIT:

Leonidas made me check whether the signature scheme is supposed to do what I think it does. There are two types of signature defined in the RFC:

The first of these (PKCS1) is the one I describe above. It uses a hash function to create a digest, and then encrypts the result with a private key.

The second algorithm uses a random salt value, and is more secure but non-deterministic. The signature produced from the code above does not change if the same key is used repeatedly, so I don't think it can be PSS.

EDIT:

Here's the bytes2string method I was using:

private static String bytes2String(byte[] bytes) {
    StringBuilder string = new StringBuilder();
    for (byte b : bytes) {
        String hexString = Integer.toHexString(0x00FF & b);
        string.append(hexString.length() == 1 ? "0" + hexString : hexString);
    }
    return string.toString();
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(7

执笔绘流年 2024-07-20 16:34:15

好的,我已经弄清楚发生了什么事。 Leonidas 是对的,加密的不仅仅是哈希值(在 Cipher 类方法的情况下),还有与摘要连接的哈希算法的 ID:

  DigestInfo ::= SEQUENCE {
      digestAlgorithm AlgorithmIdentifier,
      digest OCTET STRING
  }

这就是 Cipher 和 Signature 的加密不同的原因。

OK, I've worked out what's going on. Leonidas is right, it's not just the hash that gets encrypted (in the case of the Cipher class method), it's the ID of the hash algorithm concatenated with the digest:

  DigestInfo ::= SEQUENCE {
      digestAlgorithm AlgorithmIdentifier,
      digest OCTET STRING
  }

Which is why the encryption by the Cipher and Signature are different.

尝蛊 2024-07-20 16:34:15

要产生相同的结果:

MessageDigest sha1 = MessageDigest.getInstance("SHA1", BOUNCY_CASTLE_PROVIDER);
byte[] digest = sha1.digest(content);
DERObjectIdentifier sha1oid_ = new DERObjectIdentifier("1.3.14.3.2.26");

AlgorithmIdentifier sha1aid_ = new AlgorithmIdentifier(sha1oid_, null);
DigestInfo di = new DigestInfo(sha1aid_, digest);

byte[] plainSig = di.getDEREncoded();
Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding", BOUNCY_CASTLE_PROVIDER);
cipher.init(Cipher.ENCRYPT_MODE, privateKey);
byte[] signature = cipher.doFinal(plainSig);

To produce the same results:

MessageDigest sha1 = MessageDigest.getInstance("SHA1", BOUNCY_CASTLE_PROVIDER);
byte[] digest = sha1.digest(content);
DERObjectIdentifier sha1oid_ = new DERObjectIdentifier("1.3.14.3.2.26");

AlgorithmIdentifier sha1aid_ = new AlgorithmIdentifier(sha1oid_, null);
DigestInfo di = new DigestInfo(sha1aid_, digest);

byte[] plainSig = di.getDEREncoded();
Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding", BOUNCY_CASTLE_PROVIDER);
cipher.init(Cipher.ENCRYPT_MODE, privateKey);
byte[] signature = cipher.doFinal(plainSig);
橙幽之幻 2024-07-20 16:34:15

bytes2String 方法的一个稍微高效的版本是

private static final char[] hex = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
private static String byteArray2Hex(byte[] bytes) {
    StringBuilder sb = new StringBuilder(bytes.length * 2);
    for (final byte b : bytes) {
        sb.append(hex[(b & 0xF0) >> 4]);
        sb.append(hex[b & 0x0F]);
    }
    return sb.toString();
}

A slightly more efficient version of the bytes2String method is

private static final char[] hex = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
private static String byteArray2Hex(byte[] bytes) {
    StringBuilder sb = new StringBuilder(bytes.length * 2);
    for (final byte b : bytes) {
        sb.append(hex[(b & 0xF0) >> 4]);
        sb.append(hex[b & 0x0F]);
    }
    return sb.toString();
}
眼泪都笑了 2024-07-20 16:34:15

呃,在理解你的问题之后:你确定签名方法只创建 SHA1 并对其进行加密吗? GPG 等人提出压缩/清除数据签名。 也许这个 java-signature-alg 还创建了一个可分离/可附加的签名。

Erm, after understanding your question: are you sure that the signature-method only creates a SHA1 and encrypts it? GPG et al offer to compress/clear sign the data. Maybe this java-signature-alg also creates a detachable/attachable signature.

北风几吹夏 2024-07-20 16:34:15

以@Mike Houston 的答案为指针,这里是一个完整的示例代码,用于签名、哈希和加密。

/**
 * @param args
 */
public static void main(String[] args)
{
    try
    {
        boolean useBouncyCastleProvider = false;

        Provider provider = null;
        if (useBouncyCastleProvider)
        {
            provider = new BouncyCastleProvider();
            Security.addProvider(provider);
        }

        String plainText = "This is a plain text!!";

        // KeyPair
        KeyPairGenerator keyPairGenerator = null;
        if (null != provider)
            keyPairGenerator = KeyPairGenerator.getInstance("RSA", provider);
        else
            keyPairGenerator = KeyPairGenerator.getInstance("RSA");
        keyPairGenerator.initialize(2048);

        KeyPair keyPair = keyPairGenerator.generateKeyPair();

        // Signature
        Signature signatureProvider = null;
        if (null != provider)
            signatureProvider = Signature.getInstance("SHA256WithRSA", provider);
        else
            signatureProvider = Signature.getInstance("SHA256WithRSA");
        signatureProvider.initSign(keyPair.getPrivate());

        signatureProvider.update(plainText.getBytes());
        byte[] signature = signatureProvider.sign();

        System.out.println("Signature Output : ");
        System.out.println("\t" + new String(Base64.encode(signature)));

        // Message Digest
        String hashingAlgorithm = "SHA-256";
        MessageDigest messageDigestProvider = null;
        if (null != provider)
            messageDigestProvider = MessageDigest.getInstance(hashingAlgorithm, provider);
        else
            messageDigestProvider = MessageDigest.getInstance(hashingAlgorithm);
        messageDigestProvider.update(plainText.getBytes());

        byte[] hash = messageDigestProvider.digest();

        DigestAlgorithmIdentifierFinder hashAlgorithmFinder = new DefaultDigestAlgorithmIdentifierFinder();
        AlgorithmIdentifier hashingAlgorithmIdentifier = hashAlgorithmFinder.find(hashingAlgorithm);

        DigestInfo digestInfo = new DigestInfo(hashingAlgorithmIdentifier, hash);
        byte[] hashToEncrypt = digestInfo.getEncoded();

        // Crypto
        // You could also use "RSA/ECB/PKCS1Padding" for both the BC and SUN Providers.
        Cipher encCipher = null;
        if (null != provider)
            encCipher = Cipher.getInstance("RSA/NONE/PKCS1Padding", provider);
        else
            encCipher = Cipher.getInstance("RSA");
        encCipher.init(Cipher.ENCRYPT_MODE, keyPair.getPrivate());

        byte[] encrypted = encCipher.doFinal(hashToEncrypt);

        System.out.println("Hash and Encryption Output : ");
        System.out.println("\t" + new String(Base64.encode(encrypted)));
    }
    catch (Throwable e)
    {
        e.printStackTrace();
    }
}

您可以使用 BouncyCastle Provider 或默认的 Sun Provider。

Taking @Mike Houston's answer as pointer, here is a complete sample code that does Signature and Hash and encryption.

/**
 * @param args
 */
public static void main(String[] args)
{
    try
    {
        boolean useBouncyCastleProvider = false;

        Provider provider = null;
        if (useBouncyCastleProvider)
        {
            provider = new BouncyCastleProvider();
            Security.addProvider(provider);
        }

        String plainText = "This is a plain text!!";

        // KeyPair
        KeyPairGenerator keyPairGenerator = null;
        if (null != provider)
            keyPairGenerator = KeyPairGenerator.getInstance("RSA", provider);
        else
            keyPairGenerator = KeyPairGenerator.getInstance("RSA");
        keyPairGenerator.initialize(2048);

        KeyPair keyPair = keyPairGenerator.generateKeyPair();

        // Signature
        Signature signatureProvider = null;
        if (null != provider)
            signatureProvider = Signature.getInstance("SHA256WithRSA", provider);
        else
            signatureProvider = Signature.getInstance("SHA256WithRSA");
        signatureProvider.initSign(keyPair.getPrivate());

        signatureProvider.update(plainText.getBytes());
        byte[] signature = signatureProvider.sign();

        System.out.println("Signature Output : ");
        System.out.println("\t" + new String(Base64.encode(signature)));

        // Message Digest
        String hashingAlgorithm = "SHA-256";
        MessageDigest messageDigestProvider = null;
        if (null != provider)
            messageDigestProvider = MessageDigest.getInstance(hashingAlgorithm, provider);
        else
            messageDigestProvider = MessageDigest.getInstance(hashingAlgorithm);
        messageDigestProvider.update(plainText.getBytes());

        byte[] hash = messageDigestProvider.digest();

        DigestAlgorithmIdentifierFinder hashAlgorithmFinder = new DefaultDigestAlgorithmIdentifierFinder();
        AlgorithmIdentifier hashingAlgorithmIdentifier = hashAlgorithmFinder.find(hashingAlgorithm);

        DigestInfo digestInfo = new DigestInfo(hashingAlgorithmIdentifier, hash);
        byte[] hashToEncrypt = digestInfo.getEncoded();

        // Crypto
        // You could also use "RSA/ECB/PKCS1Padding" for both the BC and SUN Providers.
        Cipher encCipher = null;
        if (null != provider)
            encCipher = Cipher.getInstance("RSA/NONE/PKCS1Padding", provider);
        else
            encCipher = Cipher.getInstance("RSA");
        encCipher.init(Cipher.ENCRYPT_MODE, keyPair.getPrivate());

        byte[] encrypted = encCipher.doFinal(hashToEncrypt);

        System.out.println("Hash and Encryption Output : ");
        System.out.println("\t" + new String(Base64.encode(encrypted)));
    }
    catch (Throwable e)
    {
        e.printStackTrace();
    }
}

You can use BouncyCastle Provider or default Sun Provider.

喵星人汪星人 2024-07-20 16:34:15

我有类似的问题,我测试了添加代码并发现了一些有趣的结果。
通过我添加的这段代码,我可以推断出,根据要使用的“提供商”,公司可能会有所不同? (因为加密中包含的数据在所有提供者中并不总是相同)。

我的测试结果。

结论。-
Signature Decipher= ???(trash) + DigestInfo(如果我们知道“trash”的值,则数字签名将相等)

IDE Eclipse 输出...

输入数据:这是正在签名的消息

摘要:62b0a9ef15461c82766fb5bdaae9edbe4ac2e067

摘要信息:3021300906052b0e03021a0500

041462b0a9ef15461c82766fb5bdaae9edbe4ac2e067签名解密:1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff003021300906052b0 e03021a0500041462b0a9ef15461c82766fb5bdaae9edbe4ac2e067

代码

import java.security.InvalidKeyException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.SignatureException;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import org.bouncycastle.asn1.x509.DigestInfo;
import org.bouncycastle.asn1.DERObjectIdentifier;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
public class prueba {
/**
* @param args
* @throws NoSuchProviderException 
* @throws NoSuchAlgorithmException 
* @throws InvalidKeyException 
* @throws SignatureException 
* @throws NoSuchPaddingException 
* @throws BadPaddingException 
* @throws IllegalBlockSizeException 
*///
public static void main(String[] args) throws NoSuchAlgorithmException, NoSuchProviderException, InvalidKeyException, SignatureException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException {
// TODO Auto-generated method stub
KeyPair keyPair = KeyPairGenerator.getInstance("RSA","BC").generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();
PublicKey puKey = keyPair.getPublic();
String plaintext = "This is the message being signed";
// Hacer la firma
Signature instance = Signature.getInstance("SHA1withRSA","BC");
instance.initSign(privateKey);
instance.update((plaintext).getBytes());
byte[] signature = instance.sign();
// En dos partes primero hago un Hash
MessageDigest digest = MessageDigest.getInstance("SHA1", "BC");
byte[] hash = digest.digest((plaintext).getBytes());
// El digest es identico a  openssl dgst -sha1 texto.txt
//MessageDigest sha1 = MessageDigest.getInstance("SHA1","BC");
//byte[] digest = sha1.digest((plaintext).getBytes());
AlgorithmIdentifier digestAlgorithm = new AlgorithmIdentifier(new
DERObjectIdentifier("1.3.14.3.2.26"), null);
// create the digest info
DigestInfo di = new DigestInfo(digestAlgorithm, hash);
byte[] digestInfo = di.getDEREncoded();
//Luego cifro el hash
Cipher cipher = Cipher.getInstance("RSA","BC");
cipher.init(Cipher.ENCRYPT_MODE, privateKey);
byte[] cipherText = cipher.doFinal(digestInfo);
//byte[] cipherText = cipher.doFinal(digest2);
Cipher cipher2 = Cipher.getInstance("RSA","BC");
cipher2.init(Cipher.DECRYPT_MODE, puKey);
byte[] cipherText2 = cipher2.doFinal(signature);
System.out.println("Input data: " + plaintext);
System.out.println("Digest: " + bytes2String(hash));
System.out.println("Signature: " + bytes2String(signature));
System.out.println("Signature2: " + bytes2String(cipherText));
System.out.println("DigestInfo: " + bytes2String(digestInfo));
System.out.println("Signature Decipher: " + bytes2String(cipherText2));
}

I have a similar problem, I tested adding code and found some interesting results.
With this code I add, I can deduce that depending on the "provider" to use, the firm can be different? (because the data included in the encryption is not always equal in all providers).

Results of my test.

Conclusion.-
Signature Decipher= ???(trash) + DigestInfo (if we know the value of "trash", the digital signatures will be equal)

IDE Eclipse OUTPUT...

Input data: This is the message being signed

Digest: 62b0a9ef15461c82766fb5bdaae9edbe4ac2e067

DigestInfo: 3021300906052b0e03021a0500041462b0a9ef15461c82766fb5bdaae9edbe4ac2e067

Signature Decipher: 1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff003021300906052b0e03021a0500041462b0a9ef15461c82766fb5bdaae9edbe4ac2e067

CODE

import java.security.InvalidKeyException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.SignatureException;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import org.bouncycastle.asn1.x509.DigestInfo;
import org.bouncycastle.asn1.DERObjectIdentifier;
import org.bouncycastle.asn1.x509.AlgorithmIdentifier;
public class prueba {
/**
* @param args
* @throws NoSuchProviderException 
* @throws NoSuchAlgorithmException 
* @throws InvalidKeyException 
* @throws SignatureException 
* @throws NoSuchPaddingException 
* @throws BadPaddingException 
* @throws IllegalBlockSizeException 
*///
public static void main(String[] args) throws NoSuchAlgorithmException, NoSuchProviderException, InvalidKeyException, SignatureException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException {
// TODO Auto-generated method stub
KeyPair keyPair = KeyPairGenerator.getInstance("RSA","BC").generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();
PublicKey puKey = keyPair.getPublic();
String plaintext = "This is the message being signed";
// Hacer la firma
Signature instance = Signature.getInstance("SHA1withRSA","BC");
instance.initSign(privateKey);
instance.update((plaintext).getBytes());
byte[] signature = instance.sign();
// En dos partes primero hago un Hash
MessageDigest digest = MessageDigest.getInstance("SHA1", "BC");
byte[] hash = digest.digest((plaintext).getBytes());
// El digest es identico a  openssl dgst -sha1 texto.txt
//MessageDigest sha1 = MessageDigest.getInstance("SHA1","BC");
//byte[] digest = sha1.digest((plaintext).getBytes());
AlgorithmIdentifier digestAlgorithm = new AlgorithmIdentifier(new
DERObjectIdentifier("1.3.14.3.2.26"), null);
// create the digest info
DigestInfo di = new DigestInfo(digestAlgorithm, hash);
byte[] digestInfo = di.getDEREncoded();
//Luego cifro el hash
Cipher cipher = Cipher.getInstance("RSA","BC");
cipher.init(Cipher.ENCRYPT_MODE, privateKey);
byte[] cipherText = cipher.doFinal(digestInfo);
//byte[] cipherText = cipher.doFinal(digest2);
Cipher cipher2 = Cipher.getInstance("RSA","BC");
cipher2.init(Cipher.DECRYPT_MODE, puKey);
byte[] cipherText2 = cipher2.doFinal(signature);
System.out.println("Input data: " + plaintext);
System.out.println("Digest: " + bytes2String(hash));
System.out.println("Signature: " + bytes2String(signature));
System.out.println("Signature2: " + bytes2String(cipherText));
System.out.println("DigestInfo: " + bytes2String(digestInfo));
System.out.println("Signature Decipher: " + bytes2String(cipherText2));
}
凤舞天涯 2024-07-20 16:34:15

下面的代码(取自我的博客文章 - http ://todayguesswhat.blogspot.com/2021/01/manually-verifying-rsa-sha-signature-in.html )希望有助于理解具有 RSA 签名的标准 SHA 中的内容。 这应该在标准 Oracle JDK 中工作,并且不需要 Bouncy Castle 库。 它使用 sun.security 类来处理解密的签名内容 - 您可以轻松地手动解析。

在下面的示例中,消息摘要算法是 SHA-512,它会生成 64 字节(512 位)校验和。

SHA-1 非常相似 - 但生成 20 字节(160 位)校验和。

import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.MessageDigest;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;

import java.util.Arrays;

import javax.crypto.Cipher;

import sun.security.util.DerInputStream;
import sun.security.util.DerValue;

public class RSASignatureVerification
{
    public static void main(String[] args) throws Exception
    {
        KeyPairGenerator generator = KeyPairGenerator.getInstance("RSA");
        generator.initialize(2048);

        KeyPair keyPair = generator.generateKeyPair();
        PrivateKey privateKey = keyPair.getPrivate();
        PublicKey publicKey = keyPair.getPublic();

        String data = "hello oracle";
        byte[] dataBytes = data.getBytes("UTF8");

        Signature signer = Signature.getInstance("SHA512withRSA");
        signer.initSign(privateKey);

        signer.update(dataBytes);

        byte[] signature = signer.sign(); // signature bytes of the signing operation's result.

        Signature verifier = Signature.getInstance("SHA512withRSA");
        verifier.initVerify(publicKey);
        verifier.update(dataBytes);

        boolean verified = verifier.verify(signature);
        if (verified)
        {
            System.out.println("Signature verified!");
        }

/*
    The statement that describes signing to be equivalent to RSA encrypting the
    hash of the message using the private key is a greatly simplified view
    The decrypted signatures bytes likely convey a structure (ASN.1) encoded
    using DER with the hash just one component of the structure.
*/

        // lets try decrypt signature and see what is in it ...
        Cipher cipher = Cipher.getInstance("RSA");
        cipher.init(Cipher.DECRYPT_MODE, publicKey);

        byte[] decryptedSignatureBytes = cipher.doFinal(signature);

/*
    sample value of decrypted signature which was 83 bytes long

    30 51 30 0D 06 09 60 86 48 01 65 03 04 02 03 05
    00 04 40 51 00 41 75 CA 3B 2B 6B C0 0A 3F 99 E3
    6B 7A 01 DC F2 9B 36 E6 0D D4 31 89 53 A3 D9 80
    6D AE DD 45 7E 55 45 01 FC C8 73 D2 DD 8D E5 B9
    E0 71 57 13 41 D0 CD FF CA 58 01 03 A3 DD 95 A1
    C1 EE C8

    Taking above sample bytes ...
    0x30 means A SEQUENCE - which contains an ordered field of one or more types.
    It is encoded into a TLV triplet that begins with a Tag byte of 0x30.
    DER uses T,L,V (tag bytes, length bytes, value bytes) format

    0x51 is the length = 81 decimal (13 bytes)

    the 0x30 (48 decimal) that follows begins a second sequence

    https://tools.ietf.org/html/rfc3447#page-43
    the DER encoding T of the DigestInfo value is equal to the following for SHA-512
    0D 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H
    where || is concatenation and H is the hash value.

    0x0D is the length = 13 decimal (13 bytes)

    0x06 means an OBJECT_ID tag
    0x09 means the object id is 9 bytes ...

    https://learn.microsoft.com/en-au/windows/win32/seccertenroll/about-object-identifier?redirectedfrom=MSDN

    taking 2.16.840.1.101.3.4.2.3 (object id for SHA512 Hash Algorithm)

    The first two nodes of the OID are encoded onto a single byte.
    The first node is multiplied by the decimal 40 and the result is added to the value of the second node
    2 * 40 + 16 = 96 decimal = 60 hex
    Node values less than or equal to 127 are encoded on one byte.
    1 101 3 4 2 3 corresponds to in hex 01 65 03 04 02 03
    Node values greater than or equal to 128 are encoded on multiple bytes.
    Bit 7 of the leftmost byte is set to one. Bits 0 through 6 of each byte contains the encoded value.
    840 decimal = 348 hex
    -> 0000 0011 0100 1000
    set bit 7 of the left most byte to 1, ignore bit 7 of the right most byte,
    shifting right nibble of leftmost byte to the left by 1 bit
    -> 1000 0110 X100 1000 in hex 86 48

    05 00          ; NULL (0 Bytes)

    04 40          ; OCTET STRING (0x40 Bytes = 64 bytes
    SHA512 produces a 512-bit (64-byte) hash value

    51 00 41 ... C1 EE C8 is the 64 byte hash value
*/

        // parse DER encoded data
        DerInputStream derReader = new DerInputStream(decryptedSignatureBytes);

        byte[] hashValueFromSignature = null;

        // obtain sequence of entities
        DerValue[] seq = derReader.getSequence(0);
        for (DerValue v : seq)
        {
            if (v.getTag() == 4)
            {
                hashValueFromSignature = v.getOctetString(); // SHA-512 checksum extracted from decrypted signature bytes
            }
        }

        MessageDigest md = MessageDigest.getInstance("SHA-512");
        md.update(dataBytes);

        byte[] hashValueCalculated = md.digest();

        boolean manuallyVerified = Arrays.equals(hashValueFromSignature, hashValueCalculated);
        if (manuallyVerified)
        {
            System.out.println("Signature manually verified!");
        }
        else
        {
            System.out.println("Signature could NOT be manually verified!");
        }
    }
}

Code below (taken from my blog article - http://todayguesswhat.blogspot.com/2021/01/manually-verifying-rsa-sha-signature-in.html ) is hopefully helpful in understanding what is present in a standard SHA with RSA signature. This should work in standard Oracle JDK and does not require Bouncy Castle libraries. It is using the sun.security classes to process the decrypted signature contents - you could just as easily manually parse.

In the example below, the message digest algorithm is SHA-512 which produces a 64 byte (512-bit) checksum.

SHA-1 would be pretty similar - but producing a 20-byte (160-bit) checksum.

import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.MessageDigest;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;

import java.util.Arrays;

import javax.crypto.Cipher;

import sun.security.util.DerInputStream;
import sun.security.util.DerValue;

public class RSASignatureVerification
{
    public static void main(String[] args) throws Exception
    {
        KeyPairGenerator generator = KeyPairGenerator.getInstance("RSA");
        generator.initialize(2048);

        KeyPair keyPair = generator.generateKeyPair();
        PrivateKey privateKey = keyPair.getPrivate();
        PublicKey publicKey = keyPair.getPublic();

        String data = "hello oracle";
        byte[] dataBytes = data.getBytes("UTF8");

        Signature signer = Signature.getInstance("SHA512withRSA");
        signer.initSign(privateKey);

        signer.update(dataBytes);

        byte[] signature = signer.sign(); // signature bytes of the signing operation's result.

        Signature verifier = Signature.getInstance("SHA512withRSA");
        verifier.initVerify(publicKey);
        verifier.update(dataBytes);

        boolean verified = verifier.verify(signature);
        if (verified)
        {
            System.out.println("Signature verified!");
        }

/*
    The statement that describes signing to be equivalent to RSA encrypting the
    hash of the message using the private key is a greatly simplified view
    The decrypted signatures bytes likely convey a structure (ASN.1) encoded
    using DER with the hash just one component of the structure.
*/

        // lets try decrypt signature and see what is in it ...
        Cipher cipher = Cipher.getInstance("RSA");
        cipher.init(Cipher.DECRYPT_MODE, publicKey);

        byte[] decryptedSignatureBytes = cipher.doFinal(signature);

/*
    sample value of decrypted signature which was 83 bytes long

    30 51 30 0D 06 09 60 86 48 01 65 03 04 02 03 05
    00 04 40 51 00 41 75 CA 3B 2B 6B C0 0A 3F 99 E3
    6B 7A 01 DC F2 9B 36 E6 0D D4 31 89 53 A3 D9 80
    6D AE DD 45 7E 55 45 01 FC C8 73 D2 DD 8D E5 B9
    E0 71 57 13 41 D0 CD FF CA 58 01 03 A3 DD 95 A1
    C1 EE C8

    Taking above sample bytes ...
    0x30 means A SEQUENCE - which contains an ordered field of one or more types.
    It is encoded into a TLV triplet that begins with a Tag byte of 0x30.
    DER uses T,L,V (tag bytes, length bytes, value bytes) format

    0x51 is the length = 81 decimal (13 bytes)

    the 0x30 (48 decimal) that follows begins a second sequence

    https://tools.ietf.org/html/rfc3447#page-43
    the DER encoding T of the DigestInfo value is equal to the following for SHA-512
    0D 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H
    where || is concatenation and H is the hash value.

    0x0D is the length = 13 decimal (13 bytes)

    0x06 means an OBJECT_ID tag
    0x09 means the object id is 9 bytes ...

    https://learn.microsoft.com/en-au/windows/win32/seccertenroll/about-object-identifier?redirectedfrom=MSDN

    taking 2.16.840.1.101.3.4.2.3 (object id for SHA512 Hash Algorithm)

    The first two nodes of the OID are encoded onto a single byte.
    The first node is multiplied by the decimal 40 and the result is added to the value of the second node
    2 * 40 + 16 = 96 decimal = 60 hex
    Node values less than or equal to 127 are encoded on one byte.
    1 101 3 4 2 3 corresponds to in hex 01 65 03 04 02 03
    Node values greater than or equal to 128 are encoded on multiple bytes.
    Bit 7 of the leftmost byte is set to one. Bits 0 through 6 of each byte contains the encoded value.
    840 decimal = 348 hex
    -> 0000 0011 0100 1000
    set bit 7 of the left most byte to 1, ignore bit 7 of the right most byte,
    shifting right nibble of leftmost byte to the left by 1 bit
    -> 1000 0110 X100 1000 in hex 86 48

    05 00          ; NULL (0 Bytes)

    04 40          ; OCTET STRING (0x40 Bytes = 64 bytes
    SHA512 produces a 512-bit (64-byte) hash value

    51 00 41 ... C1 EE C8 is the 64 byte hash value
*/

        // parse DER encoded data
        DerInputStream derReader = new DerInputStream(decryptedSignatureBytes);

        byte[] hashValueFromSignature = null;

        // obtain sequence of entities
        DerValue[] seq = derReader.getSequence(0);
        for (DerValue v : seq)
        {
            if (v.getTag() == 4)
            {
                hashValueFromSignature = v.getOctetString(); // SHA-512 checksum extracted from decrypted signature bytes
            }
        }

        MessageDigest md = MessageDigest.getInstance("SHA-512");
        md.update(dataBytes);

        byte[] hashValueCalculated = md.digest();

        boolean manuallyVerified = Arrays.equals(hashValueFromSignature, hashValueCalculated);
        if (manuallyVerified)
        {
            System.out.println("Signature manually verified!");
        }
        else
        {
            System.out.println("Signature could NOT be manually verified!");
        }
    }
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文