呈螺旋状循环

发布于 2024-07-10 13:52:00 字数 623 浏览 9 评论 0原文

一位朋友需要一种算法,可以让他循环遍历 NxM 矩阵(N 和 M 是奇数)的元素。 我想出了一个解决方案,但我想看看我的 SO'ers 同胞是否能想出更好的解决方案。

我将发布我的解决方案作为该问题的答案。

示例输出:

对于 3x3 矩阵,输出应为:

(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1,-1) (0, -1) (1, -1)

3x3 matrix

此外,该算法应该支持非方阵,例如对于 5x3 矩阵,输出应该是:

(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1,-1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)

5x3 矩阵

A friend was in need of an algorithm that would let him loop through the elements of an NxM matrix (N and M are odd). I came up with a solution, but I wanted to see if my fellow SO'ers could come up with a better solution.

I'm posting my solution as an answer to this question.

Example Output:

For a 3x3 matrix, the output should be:

(0, 0)
(1, 0)
(1, 1)
(0, 1)
(-1, 1)
(-1, 0)
(-1, -1)
(0, -1)
(1, -1)

3x3 matrix

Furthermore, the algorithm should support non-square matrices, so for example for a 5x3 matrix, the output should be:

(0, 0)
(1, 0)
(1, 1)
(0, 1)
(-1, 1)
(-1, 0)
(-1, -1)
(0, -1)
(1, -1)
(2, -1)
(2, 0)
(2, 1)
(-2, 1)
(-2, 0)
(-2, -1)

5x3 matrix

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(30

轻拂→两袖风尘 2024-07-17 13:52:01

我和一位朋友一起制作了这个,他在 Javascript 上调整了画布的螺旋长宽比。 我得到的最佳解决方案是图像逐像素演化,填充整个图像。

希望它对某人有所帮助。

var width = 150;
var height = 50;

var x = -(width - height)/2;
var y = 0;
var dx = 1;
var dy = 0;
var x_limit = (width - height)/2;
var y_limit = 0;
var counter = 0;

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext('2d');

setInterval(function(){
   if ((-width/2 < x && x <= width/2)  && (-height/2 < y && y <= height/2)) {
       console.log("[ " + x + " , " +  y + " ]");
       ctx.fillStyle = "#FF0000";
       ctx.fillRect(width/2 + x, height/2 - y,1,1);
   }
   if( dx > 0 ){//Dir right
       if(x > x_limit){
           dx = 0;
           dy = 1;
       }
   }
   else if( dy > 0 ){ //Dir up
       if(y > y_limit){
           dx = -1;
           dy = 0;
       }
   }
   else if(dx < 0){ //Dir left
       if(x < (-1 * x_limit)){
           dx = 0;
           dy = -1;
       }
   }
   else if(dy < 0) { //Dir down
       if(y < (-1 * y_limit)){
           dx = 1;
           dy = 0;
           x_limit += 1;
           y_limit += 1;
       }
   }
   counter += 1;
   //alert (counter);
   x += dx;
   y += dy;      
}, 1);

您可以看到它在 http://jsfiddle.net/hitbyatruck/c4Kd6/ 上运行。 只需确保更改 JavaScript 变量和 HTML 属性上画布的宽度和高度。

I made this one with a friend that adjusts the spiral to the canvas aspect ratio on Javascript. Best solution I got for a image evolution pixel by pixel, filling the entire image.

Hope it helps some one.

var width = 150;
var height = 50;

var x = -(width - height)/2;
var y = 0;
var dx = 1;
var dy = 0;
var x_limit = (width - height)/2;
var y_limit = 0;
var counter = 0;

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext('2d');

setInterval(function(){
   if ((-width/2 < x && x <= width/2)  && (-height/2 < y && y <= height/2)) {
       console.log("[ " + x + " , " +  y + " ]");
       ctx.fillStyle = "#FF0000";
       ctx.fillRect(width/2 + x, height/2 - y,1,1);
   }
   if( dx > 0 ){//Dir right
       if(x > x_limit){
           dx = 0;
           dy = 1;
       }
   }
   else if( dy > 0 ){ //Dir up
       if(y > y_limit){
           dx = -1;
           dy = 0;
       }
   }
   else if(dx < 0){ //Dir left
       if(x < (-1 * x_limit)){
           dx = 0;
           dy = -1;
       }
   }
   else if(dy < 0) { //Dir down
       if(y < (-1 * y_limit)){
           dx = 1;
           dy = 0;
           x_limit += 1;
           y_limit += 1;
       }
   }
   counter += 1;
   //alert (counter);
   x += dx;
   y += dy;      
}, 1);

You can see it working on http://jsfiddle.net/hitbyatruck/c4Kd6/ . Just be sure to change the width and height of the canvas on the javascript vars and on the attributes on the HTML.

七禾 2024-07-17 13:52:01

只是为了 Javascript 的乐趣:

function spiral(x, y) {
  var iy = ix = 0
    , hr = (x - 1) / 2
    , vr = (y - 1) / 2
    , tt = x * y
    , matrix = []
    , step = 1
    , dx = 1
    , dy = 0;

  while(matrix.length < tt) {

    if((ix <= hr && ix >= (hr * -1)) && (iy <= vr && (iy >= (vr * -1)))) {
      console.log(ix, iy);
      matrix.push([ix, iy]);
    }

    ix += dx;
    iy += dy;

    // check direction
    if(dx !== 0) {
      // increase step
      if(ix === step && iy === (step * -1)) step++;

      // horizontal range reached
      if(ix === step || (ix === step * -1)) {
        dy = (ix === iy)? (dx * -1) : dx;
        dx = 0;  
      }
    } else {
      // vertical range reached
      if(iy === step || (iy === step * -1)) {
        dx = (ix === iy)? (dy * -1) : dy;
        dy = 0;
      }
    }
  }

  return matrix;
}

var sp = spiral(5, 3);

Just for fun in Javascript:

function spiral(x, y) {
  var iy = ix = 0
    , hr = (x - 1) / 2
    , vr = (y - 1) / 2
    , tt = x * y
    , matrix = []
    , step = 1
    , dx = 1
    , dy = 0;

  while(matrix.length < tt) {

    if((ix <= hr && ix >= (hr * -1)) && (iy <= vr && (iy >= (vr * -1)))) {
      console.log(ix, iy);
      matrix.push([ix, iy]);
    }

    ix += dx;
    iy += dy;

    // check direction
    if(dx !== 0) {
      // increase step
      if(ix === step && iy === (step * -1)) step++;

      // horizontal range reached
      if(ix === step || (ix === step * -1)) {
        dy = (ix === iy)? (dx * -1) : dx;
        dx = 0;  
      }
    } else {
      // vertical range reached
      if(iy === step || (iy === step * -1)) {
        dx = (ix === iy)? (dy * -1) : dy;
        dy = 0;
      }
    }
  }

  return matrix;
}

var sp = spiral(5, 3);
夜清冷一曲。 2024-07-17 13:52:01

我正在分享这段我为不同目的而设计的代码; 它是关于查找数组元素@螺旋索引“index”的列号“X”和行号“Y”。 该函数采用矩阵的宽度“w”和高度“h”以及所需的“索引”。 当然,这个函数可以用来产生相同的所需输出。 我认为这是最快的方法(因为它跳过单元格而不是扫描它们)。

    rec BuildSpiralIndex(long w, long h, long index = -1)
    {  
        long count = 0 , x = -1,  y = -1, dir = 1, phase=0, pos = 0,                            length = 0, totallength = 0;
        bool isVertical = false;
        if(index>=(w*h)) return null;

        do 
        {                
            isVertical = (count % 2) != 0;
            length = (isVertical ? h : w) - count/2 - count%2 ;
            totallength += length;
            count++;
        } while(totallength<index);

        count--; w--; h--;
        phase = (count / 4); pos = (count%4);
        x = (pos > 1 ? phase : w - phase);
        y = ((pos == 1 || pos == 2) ? h - phase : phase) + (1 * (pos == 3 ? 1 : 0));
        dir = pos > 1 ? -1 : 1;
        if (isVertical) y -= (totallength - index - 1) * dir;
        else x -= (totallength - index -1) * dir;
        return new rec { X = x, Y = y };
    }

I am sharing this code which I designed for a different purpose; it is about finding the Column number "X", and the row number "Y" of array element @ spiral index "index". This function takes the width "w" and height "h" of the matrix, and the required "index". Of course, this function can be used to produce the same required output. I think it is the fastest possible method (as it jumps over cells instead of scanning them).

    rec BuildSpiralIndex(long w, long h, long index = -1)
    {  
        long count = 0 , x = -1,  y = -1, dir = 1, phase=0, pos = 0,                            length = 0, totallength = 0;
        bool isVertical = false;
        if(index>=(w*h)) return null;

        do 
        {                
            isVertical = (count % 2) != 0;
            length = (isVertical ? h : w) - count/2 - count%2 ;
            totallength += length;
            count++;
        } while(totallength<index);

        count--; w--; h--;
        phase = (count / 4); pos = (count%4);
        x = (pos > 1 ? phase : w - phase);
        y = ((pos == 1 || pos == 2) ? h - phase : phase) + (1 * (pos == 3 ? 1 : 0));
        dir = pos > 1 ? -1 : 1;
        if (isVertical) y -= (totallength - index - 1) * dir;
        else x -= (totallength - index -1) * dir;
        return new rec { X = x, Y = y };
    }
匿名。 2024-07-17 13:52:01

Python 使用 Can Berk Güder 回答 循环顺时针螺旋代码。

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = 1
    for i in range(max(X, Y)**2):
        if (-X/2 < x <= X/2) and (-Y/2 < y <= Y/2):
            print (x, y)
            # DO STUFF...
        if x == -y or (x < 0 and x == y) or (x > 0 and x-1 == y):
            dx, dy = dy, -dx
        x, y = x+dx, y+dy

Python looping clockwise spiral code using Can Berk Güder answer.

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = 1
    for i in range(max(X, Y)**2):
        if (-X/2 < x <= X/2) and (-Y/2 < y <= Y/2):
            print (x, y)
            # DO STUFF...
        if x == -y or (x < 0 and x == y) or (x > 0 and x-1 == y):
            dx, dy = dy, -dx
        x, y = x+dx, y+dy
梦情居士 2024-07-17 13:52:01

Davidont 在 VB.Net 中的优秀解决方案

    Public Function Spiral(n As Integer) As RowCol
    ' given n an index in the squared spiral
    ' p the sum of point in inner square
    ' a the position on the current square
    ' n = p + a
    ' starts with row 0 col -1
    Dim r As Integer = CInt(Math.Floor((Math.Sqrt(n + 1) - 1) / 2) + 1)

    ' compute radius : inverse arithmetic sum of 8+16+24+...=
    Dim p As Integer = (8 * r * (r - 1)) \ 2
    ' compute total point on radius -1 : arithmetic sum of 8+16+24+...

    Dim en As Integer = r * 2
    ' points by face

    Dim a As Integer = (1 + n - p) Mod (r * 8)
    ' compute the position and shift it so the first is (-r,-r) but (-r+1,-r)
    ' so square can connect

    Dim row As Integer
    Dim col As Integer

    Select Case Math.Floor(a \ (r * 2))
        ' find the face : 0 top, 1 right, 2, bottom, 3 left
        Case 0
            row = a - r
            col = -r
        Case 1
            row = r
            col = (a Mod en) - r
        Case 2
            row = r - (a Mod en)
            col = r
        Case 3
            row = -r
            col = r - (a Mod en)
    End Select

    Return New RowCol(row, col)
End Function

Davidont's excellent solution in VB.Net

    Public Function Spiral(n As Integer) As RowCol
    ' given n an index in the squared spiral
    ' p the sum of point in inner square
    ' a the position on the current square
    ' n = p + a
    ' starts with row 0 col -1
    Dim r As Integer = CInt(Math.Floor((Math.Sqrt(n + 1) - 1) / 2) + 1)

    ' compute radius : inverse arithmetic sum of 8+16+24+...=
    Dim p As Integer = (8 * r * (r - 1)) \ 2
    ' compute total point on radius -1 : arithmetic sum of 8+16+24+...

    Dim en As Integer = r * 2
    ' points by face

    Dim a As Integer = (1 + n - p) Mod (r * 8)
    ' compute the position and shift it so the first is (-r,-r) but (-r+1,-r)
    ' so square can connect

    Dim row As Integer
    Dim col As Integer

    Select Case Math.Floor(a \ (r * 2))
        ' find the face : 0 top, 1 right, 2, bottom, 3 left
        Case 0
            row = a - r
            col = -r
        Case 1
            row = r
            col = (a Mod en) - r
        Case 2
            row = r - (a Mod en)
            col = r
        Case 3
            row = -r
            col = r - (a Mod en)
    End Select

    Return New RowCol(row, col)
End Function
只有影子陪我不离不弃 2024-07-17 13:52:00

这是我的解决方案(Python):

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = -1
    for i in range(max(X, Y)**2):
        if (-X/2 < x <= X/2) and (-Y/2 < y <= Y/2):
            print (x, y)
            # DO STUFF...
        if x == y or (x < 0 and x == -y) or (x > 0 and x == 1-y):
            dx, dy = -dy, dx
        x, y = x+dx, y+dy

Here's my solution (in Python):

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = -1
    for i in range(max(X, Y)**2):
        if (-X/2 < x <= X/2) and (-Y/2 < y <= Y/2):
            print (x, y)
            # DO STUFF...
        if x == y or (x < 0 and x == -y) or (x > 0 and x == 1-y):
            dx, dy = -dy, dx
        x, y = x+dx, y+dy
一身仙ぐ女味 2024-07-17 13:52:00

C++ 有人吗? 来自 python 的快速翻译,为了完整性而发布

void Spiral( int X, int Y){
    int x,y,dx,dy;
    x = y = dx =0;
    dy = -1;
    int t = std::max(X,Y);
    int maxI = t*t;
    for(int i =0; i < maxI; i++){
        if ((-X/2 <= x) && (x <= X/2) && (-Y/2 <= y) && (y <= Y/2)){
            // DO STUFF...
        }
        if( (x == y) || ((x < 0) && (x == -y)) || ((x > 0) && (x == 1-y))){
            t = dx;
            dx = -dy;
            dy = t;
        }
        x += dx;
        y += dy;
    }
}

C++ anyone? Quick translation from python, posted for completeness

void Spiral( int X, int Y){
    int x,y,dx,dy;
    x = y = dx =0;
    dy = -1;
    int t = std::max(X,Y);
    int maxI = t*t;
    for(int i =0; i < maxI; i++){
        if ((-X/2 <= x) && (x <= X/2) && (-Y/2 <= y) && (y <= Y/2)){
            // DO STUFF...
        }
        if( (x == y) || ((x < 0) && (x == -y)) || ((x > 0) && (x == 1-y))){
            t = dx;
            dx = -dy;
            dy = t;
        }
        x += dx;
        y += dy;
    }
}
愁杀 2024-07-17 13:52:00
let x = 0
let y = 0
let d = 1
let m = 1

while true
  while 2 * x * d < m
    print(x, y)
    x = x + d
  while 2 * y * d < m
    print(x, y)
    y = y + d
  d = -1 * d
  m = m + 1

对于这个问题,已经有许多用各种编程语言编写的解决方案,但它们似乎都源于相同的复杂方法。 我将考虑计算螺旋的更普遍的问题,可以使用归纳法简洁地表达它。

基本情况:从 (0, 0) 开始,向前移动 1 格,向左转,向前移动 1 格,向左转。
归纳步骤:向前移动n+1格,左转,向前移动n+1格,左转。

表达这个问题的数学优雅强烈表明应该有一个简单的算法来计算解决方案。 考虑到抽象,我选择不使用特定的编程语言来实现该算法,而是以伪代码的形式实现。

首先,我将考虑一种使用 4 对 while 循环仅计算螺旋的 2 次迭代的算法。 每对的结构相似,但其本身又不同。 一开始这可能看起来很疯狂(有些循环只执行一次),但我将逐步进行转换,直到我们到达 4 对相同的循环,因此可以用放置在另一个循环内的一对循环替换。
这将为我们提供一个无需使用任何条件即可计算 n 次迭代的通用解决方案。

let x = 0
let y = 0

//RIGHT, UP
while x < 1
  print(x, y)
  x = x + 1
while y < 1
  print(x, y)
  y = y + 1

//LEFT, LEFT, DOWN, DOWN
while x > -1
  print(x, y)
  x = x - 1
while y > -1
  print(x, y)
  y = y - 1

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x < 2
  print(x, y)
  x = x + 1
while y < 2
  print(x, y)
  y = y + 1

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x > -2
  print(x, y)
  x = x - 1
while y > -2
  print(x, y)
  y = y - 1

我们要做的第一个转换是引入一个新变量 d(表示方向),其值可以是 +1 或 -1。 方向在每对循环之后切换。 由于我们知道所有点上 d 的值,因此我们可以将每个不等式的每一边都乘以它,相应地调整不等式的方向,并将 d 与一个常数的乘法简化为另一个常数。 这给我们留下了以下内容。

let x = 0
let y = 0
let d = 1

//RIGHT, UP
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, DOWN, DOWN
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d

现在我们注意到 x * d 和 RHS 都是整数,因此我们可以从 RHS 中减去 0 到 1 之间的任何实数值,而不会影响不等式的结果。 我们选择从每隔一对 while 循环的不等式中减去 0.5,以便建立更多的模式。

let x = 0
let y = 0
let d = 1

//RIGHT, UP
while x * d < 0.5
  print(x, y)
  x = x + d
while y * d < 0.5
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, DOWN, DOWN
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < 1.5
  print(x, y)
  x = x + d
while y * d < 1.5
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d

现在我们可以引入另一个变量 m 来表示每对 while 循环所采取的步数。

let x = 0
let y = 0
let d = 1
let m = 0.5

//RIGHT, UP
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//LEFT, LEFT, DOWN, DOWN
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d

最后,我们看到每对 while 循环的结构是相同的,并且可以简化为放置在另一个循环内部的单个循环。 另外,为了避免使用实数值,我乘以 m 的初始值; m 值增加; 每个不等式两边都除以 2。

这导致了本答案开头所示的解决方案。

编辑:已经过去几年了,但我遇到了类似的问题,并在 F# 中编写了以下解决方案,我想分享。 在我原来的答案中,“打印”一词可能用词不当,但希望这个非伪代码版本能够解决有关多功能性和终止条件的评论中提出的任何观点。 我添加了关于任意点螺旋式旋转的示例用例,并找到迭代 NxM 矩阵的原始问题的正确解决方案。

let spiral =
    let rec f (x, y) d m = seq {
        let mutable x = x
        let mutable y = y
        while 2 * x * d < m do
            yield x, y
            x <- x + d
        while 2 * y * d < m do
            yield x, y
            y <- y + d
        yield! f (x, y) -d (m + 1)
    }
    f (0, 0) 1 1

spiral
|> Seq.take 5
|> List.ofSeq;;
// [(0, 0); (1, 0); (1, 1); (0, 1); (-1, 1)]

spiral
|> Seq.take 5
|> Seq.map (fun (x, y) -> x + 5, y + 5)
|> List.ofSeq;;
// [(5, 5); (6, 5); (6, 6); (5, 6); (4, 6)]

spiral
|> Seq.takeWhile (fun (x, y) -> x * x + y * y < 9)
|> Seq.filter (fun (x, y) -> -2 <= x && x <= 2 && -1 <= y && y <= 1)
|> List.ofSeq;;
// [(0, 0); (1, 0); (1, 1); (0, 1); (-1, 1); (-1, 0); (-1, -1); (0, -1); (1, -1); (2, -1); (2, 0); (2, 1); (-2, 1); (-2, 0); (-2, -1)]
let x = 0
let y = 0
let d = 1
let m = 1

while true
  while 2 * x * d < m
    print(x, y)
    x = x + d
  while 2 * y * d < m
    print(x, y)
    y = y + d
  d = -1 * d
  m = m + 1

There have been many proposed solutions for this problem wrote in various programming languages however they all seem to stem from the same convoluted approach. I'm going to consider the more general problem of computing a spiral which can be expressed concisely using induction.

Base case: Start at (0, 0), move forward 1 square, turn left, move forward 1 square, turn left.
Inductive step: Move forward n+1 squares, turn left, move forward n+1 squares, turn left.

The mathematical elegance of expressing this problem strongly suggests there should be a simple algorithm to compute the solution. Keeping abstraction in mind, I've chosen not to implement the algorithm in a specific programming language but rather as pseudo-code.

First I'll consider an algorithm to compute just 2 iterations of the spiral using 4 pairs of while loops. The structure of each pair is similar, yet distinct in its own right. This may seem crazy at first (some loops only get executed once) but step by step I'll make transformations until we arrive at 4 pairs of loops that are identical and hence can be replaced with a single pair placed inside of another loop.
This will provide us with a general solution of computing n iterations without using any conditionals.

let x = 0
let y = 0

//RIGHT, UP
while x < 1
  print(x, y)
  x = x + 1
while y < 1
  print(x, y)
  y = y + 1

//LEFT, LEFT, DOWN, DOWN
while x > -1
  print(x, y)
  x = x - 1
while y > -1
  print(x, y)
  y = y - 1

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x < 2
  print(x, y)
  x = x + 1
while y < 2
  print(x, y)
  y = y + 1

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x > -2
  print(x, y)
  x = x - 1
while y > -2
  print(x, y)
  y = y - 1

The first transformation we will make is the introduction of a new variable d, for direction, that holds either the value +1 or -1. The direction switches after each pair of loops. Since we know the value of d at all points, we can multiply each side of each inequality by it, adjust the direction of the inequality accordingly and simplify any multiplications of d by a constant to another constant. This leaves us with the following.

let x = 0
let y = 0
let d = 1

//RIGHT, UP
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, DOWN, DOWN
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d

Now we note that both x * d and the RHS are integers so we can subtract any real value between 0 and 1 from the RHS without affecting the result of the inequality. We choose to subtract 0.5 from the inequalities of every other pair of while loops in order to establish more of a pattern.

let x = 0
let y = 0
let d = 1

//RIGHT, UP
while x * d < 0.5
  print(x, y)
  x = x + d
while y * d < 0.5
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, DOWN, DOWN
while x * d < 1
  print(x, y)
  x = x + d
while y * d < 1
  print(x, y)
  y = y + d
d = -1 * d

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < 1.5
  print(x, y)
  x = x + d
while y * d < 1.5
  print(x, y)
  y = y + d
d = -1 * d

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < 2
  print(x, y)
  x = x + d
while y * d < 2
  print(x, y)
  y = y + d

We can now introduce another variable m for the number of steps we take at each pair of while loops.

let x = 0
let y = 0
let d = 1
let m = 0.5

//RIGHT, UP
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//LEFT, LEFT, DOWN, DOWN
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d
d = -1 * d
m = m + 0.5

//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < m
  print(x, y)
  x = x + d
while y * d < m
  print(x, y)
  y = y + d

Finally, we see that the structure of each pair of while loops is identical and can be reduced to a single loop placed inside of another loop. Also, to avoid using real valued numbers I've multiplied the initial value of m; the value m is incremented by; and both sides of each inequality by 2.

This leads to the solution shown at the beginning of this answer.

EDIT: It has been a few years but I had a similar problem and wrote the following solution in F# which I want to share. The word print may have been a misnomer in my original answer but hopefully this non-pseudocode version will address any points raised in the comments regarding versatility and termination conditions. I have added example use cases for spiralling about an arbitrary point and finding the correct solution to the original problem for iterating an NxM matrix.

let spiral =
    let rec f (x, y) d m = seq {
        let mutable x = x
        let mutable y = y
        while 2 * x * d < m do
            yield x, y
            x <- x + d
        while 2 * y * d < m do
            yield x, y
            y <- y + d
        yield! f (x, y) -d (m + 1)
    }
    f (0, 0) 1 1

spiral
|> Seq.take 5
|> List.ofSeq;;
// [(0, 0); (1, 0); (1, 1); (0, 1); (-1, 1)]

spiral
|> Seq.take 5
|> Seq.map (fun (x, y) -> x + 5, y + 5)
|> List.ofSeq;;
// [(5, 5); (6, 5); (6, 6); (5, 6); (4, 6)]

spiral
|> Seq.takeWhile (fun (x, y) -> x * x + y * y < 9)
|> Seq.filter (fun (x, y) -> -2 <= x && x <= 2 && -1 <= y && y <= 1)
|> List.ofSeq;;
// [(0, 0); (1, 0); (1, 1); (0, 1); (-1, 1); (-1, 0); (-1, -1); (0, -1); (1, -1); (2, -1); (2, 0); (2, 1); (-2, 1); (-2, 0); (-2, -1)]
孤独患者 2024-07-17 13:52:00

这是一个 O(1) 解决方案,用于查找平方螺旋中的位置: Fiddle

function spiral(n) {
    // given n an index in the squared spiral
    // p the sum of point in inner square
    // a the position on the current square
    // n = p + a

    var r = Math.floor((Math.sqrt(n + 1) - 1) / 2) + 1;

    // compute radius : inverse arithmetic sum of 8+16+24+...=
    var p = (8 * r * (r - 1)) / 2;
    // compute total point on radius -1 : arithmetic sum of 8+16+24+...

    var en = r * 2;
    // points by face

    var a = (1 + n - p) % (r * 8);
    // compute de position and shift it so the first is (-r,-r) but (-r+1,-r)
    // so square can connect

    var pos = [0, 0, r];
    switch (Math.floor(a / (r * 2))) {
        // find the face : 0 top, 1 right, 2, bottom, 3 left
        case 0:
            {
                pos[0] = a - r;
                pos[1] = -r;
            }
            break;
        case 1:
            {
                pos[0] = r;
                pos[1] = (a % en) - r;

            }
            break;
        case 2:
            {
                pos[0] = r - (a % en);
                pos[1] = r;
            }
            break;
        case 3:
            {
                pos[0] = -r;
                pos[1] = r - (a % en);
            }
            break;
    }
    console.log("n : ", n, " r : ", r, " p : ", p, " a : ", a, "  -->  ", pos);
    return pos;
}

Here's a O(1) solution to find the position in a squared spiral : Fiddle

function spiral(n) {
    // given n an index in the squared spiral
    // p the sum of point in inner square
    // a the position on the current square
    // n = p + a

    var r = Math.floor((Math.sqrt(n + 1) - 1) / 2) + 1;

    // compute radius : inverse arithmetic sum of 8+16+24+...=
    var p = (8 * r * (r - 1)) / 2;
    // compute total point on radius -1 : arithmetic sum of 8+16+24+...

    var en = r * 2;
    // points by face

    var a = (1 + n - p) % (r * 8);
    // compute de position and shift it so the first is (-r,-r) but (-r+1,-r)
    // so square can connect

    var pos = [0, 0, r];
    switch (Math.floor(a / (r * 2))) {
        // find the face : 0 top, 1 right, 2, bottom, 3 left
        case 0:
            {
                pos[0] = a - r;
                pos[1] = -r;
            }
            break;
        case 1:
            {
                pos[0] = r;
                pos[1] = (a % en) - r;

            }
            break;
        case 2:
            {
                pos[0] = r - (a % en);
                pos[1] = r;
            }
            break;
        case 3:
            {
                pos[0] = -r;
                pos[1] = r - (a % en);
            }
            break;
    }
    console.log("n : ", n, " r : ", r, " p : ", p, " a : ", a, "  -->  ", pos);
    return pos;
}
很酷不放纵 2024-07-17 13:52:00

我喜欢 python 的生成器。

def spiral(N, M):
    x,y = 0,0   
    dx, dy = 0, -1

    for dumb in xrange(N*M):
        if abs(x) == abs(y) and [dx,dy] != [1,0] or x>0 and y == 1-x:  
            dx, dy = -dy, dx            # corner, change direction

        if abs(x)>N/2 or abs(y)>M/2:    # non-square
            dx, dy = -dy, dx            # change direction
            x, y = -y+dx, x+dy          # jump

        yield x, y
        x, y = x+dx, y+dy

测试:

print 'Spiral 3x3:'
for a,b in spiral(3,3):
    print (a,b),

print '\n\nSpiral 5x3:'
for a,b in spiral(5,3):
    print (a,b),

您将得到:

Spiral 3x3:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) 

Spiral 5x3:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)

I love python's generators.

def spiral(N, M):
    x,y = 0,0   
    dx, dy = 0, -1

    for dumb in xrange(N*M):
        if abs(x) == abs(y) and [dx,dy] != [1,0] or x>0 and y == 1-x:  
            dx, dy = -dy, dx            # corner, change direction

        if abs(x)>N/2 or abs(y)>M/2:    # non-square
            dx, dy = -dy, dx            # change direction
            x, y = -y+dx, x+dy          # jump

        yield x, y
        x, y = x+dx, y+dy

Testing with:

print 'Spiral 3x3:'
for a,b in spiral(3,3):
    print (a,b),

print '\n\nSpiral 5x3:'
for a,b in spiral(5,3):
    print (a,b),

You get:

Spiral 3x3:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) 

Spiral 5x3:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)
高冷爸爸 2024-07-17 13:52:00

这是一个 C++ 解决方案,它表明您可以直接轻松地根据前一个坐标计算下一个 (x, y) 坐标 - 无需跟踪当前方向、半径或其他任何内容:

void spiral(const int M, const int N)
{
    // Generate an Ulam spiral centered at (0, 0).
    int x = 0;
    int y = 0;

    int end = max(N, M) * max(N, M);
    for(int i = 0; i < end; ++i)
    {
        // Translate coordinates and mask them out.
        int xp = x + N / 2;
        int yp = y + M / 2;
        if(xp >= 0 && xp < N && yp >= 0 && yp < M)
            cout << xp << '\t' << yp << '\n';

        // No need to track (dx, dy) as the other examples do:
        if(abs(x) <= abs(y) && (x != y || x >= 0))
            x += ((y >= 0) ? 1 : -1);
        else
            y += ((x >= 0) ? -1 : 1);
    }
}

如果您想要做的只是生成螺旋中的前 N ​​个点(没有原始问题对 N x M 区域进行屏蔽的约束),代码变得非常简单:

void spiral(const int N)
{
    int x = 0;
    int y = 0;
    for(int i = 0; i < N; ++i)
    {
        cout << x << '\t' << y << '\n';
        if(abs(x) <= abs(y) && (x != y || x >= 0))
            x += ((y >= 0) ? 1 : -1);
        else
            y += ((x >= 0) ? -1 : 1);
    }
}

技巧是您可以比较 x 和 y 来确定您位于正方形的哪一侧,这会告诉您要朝哪个方向移动。

Here's a C++ solution that shows that you can calculate the next (x, y) coordinates directly and easily from the previous ones - no need for tracking the current direction, radius, or anything else:

void spiral(const int M, const int N)
{
    // Generate an Ulam spiral centered at (0, 0).
    int x = 0;
    int y = 0;

    int end = max(N, M) * max(N, M);
    for(int i = 0; i < end; ++i)
    {
        // Translate coordinates and mask them out.
        int xp = x + N / 2;
        int yp = y + M / 2;
        if(xp >= 0 && xp < N && yp >= 0 && yp < M)
            cout << xp << '\t' << yp << '\n';

        // No need to track (dx, dy) as the other examples do:
        if(abs(x) <= abs(y) && (x != y || x >= 0))
            x += ((y >= 0) ? 1 : -1);
        else
            y += ((x >= 0) ? -1 : 1);
    }
}

If all you're trying to do is generate the first N points in the spiral (without the original problem's constraint of masking to an N x M region), the code becomes very simple:

void spiral(const int N)
{
    int x = 0;
    int y = 0;
    for(int i = 0; i < N; ++i)
    {
        cout << x << '\t' << y << '\n';
        if(abs(x) <= abs(y) && (x != y || x >= 0))
            x += ((y >= 0) ? 1 : -1);
        else
            y += ((x >= 0) ? -1 : 1);
    }
}

The trick is that you can compare x and y to determine what side of the square you're on, and that tells you what direction to move in.

青衫负雪 2024-07-17 13:52:00

Java 螺旋“高尔夫代码”尝试,基于 C++ 变体。

public static void Spiral(int X, int Y) {
    int x=0, y=0, dx = 0, dy = -1;
    int t = Math.max(X,Y);
    int maxI = t*t;

    for (int i=0; i < maxI; i++){
        if ((-X/2 <= x) && (x <= X/2) && (-Y/2 <= y) && (y <= Y/2)) {
            System.out.println(x+","+y);
            //DO STUFF
        }

        if( (x == y) || ((x < 0) && (x == -y)) || ((x > 0) && (x == 1-y))) {
            t=dx; dx=-dy; dy=t;
        }   
        x+=dx; y+=dy;
    }
}

Java spiral "Code golf" attempt, based on the C++ variant.

public static void Spiral(int X, int Y) {
    int x=0, y=0, dx = 0, dy = -1;
    int t = Math.max(X,Y);
    int maxI = t*t;

    for (int i=0; i < maxI; i++){
        if ((-X/2 <= x) && (x <= X/2) && (-Y/2 <= y) && (y <= Y/2)) {
            System.out.println(x+","+y);
            //DO STUFF
        }

        if( (x == y) || ((x < 0) && (x == -y)) || ((x > 0) && (x == 1-y))) {
            t=dx; dx=-dy; dy=t;
        }   
        x+=dx; y+=dy;
    }
}
小耗子 2024-07-17 13:52:00

TDD,在 Java 中。

SpiralTest.java:

import java.awt.Point;
import java.util.List;

import junit.framework.TestCase;

public class SpiralTest extends TestCase {

    public void test3x3() throws Exception {
        assertEquals("(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1)", strung(new Spiral(3, 3).spiral()));
    }

    public void test5x3() throws Exception {
        assertEquals("(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)",
                strung(new Spiral(5, 3).spiral()));
    }

    private String strung(List<Point> points) {
        StringBuffer sb = new StringBuffer();
        for (Point point : points)
            sb.append(strung(point));
        return sb.toString().trim();
    }

    private String strung(Point point) {
        return String.format("(%s, %s) ", point.x, point.y);
    }

}

Spiral.java:

import java.awt.Point;
import java.util.ArrayList;
import java.util.List;

public class Spiral {
    private enum Direction {
    E(1, 0) {Direction next() {return N;}},
    N(0, 1) {Direction next() {return W;}},
    W(-1, 0) {Direction next() {return S;}},
    S(0, -1) {Direction next() {return E;}},;

        private int dx;
        private int dy;

        Point advance(Point point) {
            return new Point(point.x + dx, point.y + dy);
        }

        abstract Direction next();

        Direction(int dx, int dy) {
            this.dx = dx;
            this.dy = dy;
        }
    };
    private final static Point ORIGIN = new Point(0, 0);
    private final int   width;
    private final int   height;
    private Point       point;
    private Direction   direction   = Direction.E;
    private List<Point> list = new ArrayList<Point>();

    public Spiral(int width, int height) {
        this.width = width;
        this.height = height;
    }

    public List<Point> spiral() {
        point = ORIGIN;
        int steps = 1;
        while (list.size() < width * height) {
            advance(steps);
            advance(steps);
            steps++;
        }
        return list;
    }

    private void advance(int n) {
        for (int i = 0; i < n; ++i) {
            if (inBounds(point))
                list.add(point);
            point = direction.advance(point);
        }
        direction = direction.next();
    }

    private boolean inBounds(Point p) {
        return between(-width / 2, width / 2, p.x) && between(-height / 2, height / 2, p.y);
    }

    private static boolean between(int low, int high, int n) {
        return low <= n && n <= high;
    }
}

TDD, in Java.

SpiralTest.java:

import java.awt.Point;
import java.util.List;

import junit.framework.TestCase;

public class SpiralTest extends TestCase {

    public void test3x3() throws Exception {
        assertEquals("(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1)", strung(new Spiral(3, 3).spiral()));
    }

    public void test5x3() throws Exception {
        assertEquals("(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)",
                strung(new Spiral(5, 3).spiral()));
    }

    private String strung(List<Point> points) {
        StringBuffer sb = new StringBuffer();
        for (Point point : points)
            sb.append(strung(point));
        return sb.toString().trim();
    }

    private String strung(Point point) {
        return String.format("(%s, %s) ", point.x, point.y);
    }

}

Spiral.java:

import java.awt.Point;
import java.util.ArrayList;
import java.util.List;

public class Spiral {
    private enum Direction {
    E(1, 0) {Direction next() {return N;}},
    N(0, 1) {Direction next() {return W;}},
    W(-1, 0) {Direction next() {return S;}},
    S(0, -1) {Direction next() {return E;}},;

        private int dx;
        private int dy;

        Point advance(Point point) {
            return new Point(point.x + dx, point.y + dy);
        }

        abstract Direction next();

        Direction(int dx, int dy) {
            this.dx = dx;
            this.dy = dy;
        }
    };
    private final static Point ORIGIN = new Point(0, 0);
    private final int   width;
    private final int   height;
    private Point       point;
    private Direction   direction   = Direction.E;
    private List<Point> list = new ArrayList<Point>();

    public Spiral(int width, int height) {
        this.width = width;
        this.height = height;
    }

    public List<Point> spiral() {
        point = ORIGIN;
        int steps = 1;
        while (list.size() < width * height) {
            advance(steps);
            advance(steps);
            steps++;
        }
        return list;
    }

    private void advance(int n) {
        for (int i = 0; i < n; ++i) {
            if (inBounds(point))
                list.add(point);
            point = direction.advance(point);
        }
        direction = direction.next();
    }

    private boolean inBounds(Point p) {
        return between(-width / 2, width / 2, p.x) && between(-height / 2, height / 2, p.y);
    }

    private static boolean between(int low, int high, int n) {
        return low <= n && n <= high;
    }
}
万劫不复 2024-07-17 13:52:00

哈斯克尔,你选吧:

spiral x y = (0, 0) : concatMap ring [1 .. max x' y'] where
    ring n | n > x' = left x' n  ++ right x' (-n)
    ring n | n > y' = up   n  y' ++ down (-n) y'
    ring n          = up n n ++ left n n ++ down n n ++ right n n
    up    x y = [(x, n) | n <- [1-y .. y]]; down = (.) reverse . up
    right x y = [(n, y) | n <- [1-x .. x]]; left = (.) reverse . right
    (x', y') = (x `div` 2, y `div` 2)

spiral x y = filter (\(x',y') -> 2*abs x' <= x && 2*abs y' <= y) .
             scanl (\(a,b) (c,d) -> (a+c,b+d)) (0,0) $
             concat [ (:) (1,0) . tail 
                    $ concatMap (replicate n) [(0,1),(-1,0),(0,-1),(1,0)]
                    | n <- [2,4..max x y] ]

Haskell, take your pick:

spiral x y = (0, 0) : concatMap ring [1 .. max x' y'] where
    ring n | n > x' = left x' n  ++ right x' (-n)
    ring n | n > y' = up   n  y' ++ down (-n) y'
    ring n          = up n n ++ left n n ++ down n n ++ right n n
    up    x y = [(x, n) | n <- [1-y .. y]]; down = (.) reverse . up
    right x y = [(n, y) | n <- [1-x .. x]]; left = (.) reverse . right
    (x', y') = (x `div` 2, y `div` 2)

spiral x y = filter (\(x',y') -> 2*abs x' <= x && 2*abs y' <= y) .
             scanl (\(a,b) (c,d) -> (a+c,b+d)) (0,0) $
             concat [ (:) (1,0) . tail 
                    $ concatMap (replicate n) [(0,1),(-1,0),(0,-1),(1,0)]
                    | n <- [2,4..max x y] ]
小兔几 2024-07-17 13:52:00

这是我的解决方案(用 Ruby 语言)

def spiral(xDim, yDim)
   sx = xDim / 2
   sy = yDim / 2

   cx = cy = 0
   direction = distance = 1

   yield(cx,cy)
   while(cx.abs <= sx || cy.abs <= sy)
      distance.times { cx += direction; yield(cx,cy) if(cx.abs <= sx && cy.abs <= sy); } 
      distance.times { cy += direction; yield(cx,cy) if(cx.abs <= sx && cy.abs <= sy); } 
      distance += 1
      direction *= -1
   end
end

spiral(5,3) { |x,y|
   print "(#{x},#{y}),"
}

Here is my solution (In Ruby)

def spiral(xDim, yDim)
   sx = xDim / 2
   sy = yDim / 2

   cx = cy = 0
   direction = distance = 1

   yield(cx,cy)
   while(cx.abs <= sx || cy.abs <= sy)
      distance.times { cx += direction; yield(cx,cy) if(cx.abs <= sx && cy.abs <= sy); } 
      distance.times { cy += direction; yield(cx,cy) if(cx.abs <= sx && cy.abs <= sy); } 
      distance += 1
      direction *= -1
   end
end

spiral(5,3) { |x,y|
   print "(#{x},#{y}),"
}
往事风中埋 2024-07-17 13:52:00

你的问题看起来像一个叫做螺旋记忆的问题。
在该问题中,网格上的每个方格从位于原点的数字 1 开始以螺旋模式分配。 然后一边螺旋向外一边计数。 例如:

17  16  15  14  13

18   5   4   3  12

19   6   1   2  11

20   7   8   9  10

21  22  23  ---->

我计算此螺旋图案后每个数字的坐标的解决方案如下:

def spiral_pattern(num):
    x = y = 0
    for _ in range(num-1):
        x, y = find_next(x, y)
    yield (x, y)


def find_next(x, y):
    """find the coordinates of the next number"""
    if x == 0 and y == 0:
        return 1, 0

    if abs(x) == abs(y):
        if x > 0 and y > 0:
            x, y = left(x, y)
        elif x < 0 and y > 0:
            x, y = down(x, y)
        elif x < 0 and y < 0:
            x, y = right(x, y)
        elif x > 0 and y < 0:
            x, y = x+1, y
    else:
        if x > y and abs(x) > abs(y):
            x, y = up(x, y)
        elif x < y and abs(x) < abs(y):
            x, y = left(x, y)
        elif x < y and abs(x) > abs(y):
            x, y = down(x, y)
        elif x > y and abs(x) < abs(y):
            x, y = right(x, y)

    return x, y

def up(x, y):
    return x, y+1


def down(x, y):
    return x, y-1


def left(x, y):
    return x-1, y


def right(x, y):
    return x+1, y

Your question looks like a question called spiral memory.
In that problem, each square on the grid is allocated in a spiral pattern starting from the number 1 which locates at the origin. And then counting up while spiraling outwards. For example:

17  16  15  14  13

18   5   4   3  12

19   6   1   2  11

20   7   8   9  10

21  22  23  ---->

My solution for computing the coordinates of each number following this spiral pattern is posted below:

def spiral_pattern(num):
    x = y = 0
    for _ in range(num-1):
        x, y = find_next(x, y)
    yield (x, y)


def find_next(x, y):
    """find the coordinates of the next number"""
    if x == 0 and y == 0:
        return 1, 0

    if abs(x) == abs(y):
        if x > 0 and y > 0:
            x, y = left(x, y)
        elif x < 0 and y > 0:
            x, y = down(x, y)
        elif x < 0 and y < 0:
            x, y = right(x, y)
        elif x > 0 and y < 0:
            x, y = x+1, y
    else:
        if x > y and abs(x) > abs(y):
            x, y = up(x, y)
        elif x < y and abs(x) < abs(y):
            x, y = left(x, y)
        elif x < y and abs(x) > abs(y):
            x, y = down(x, y)
        elif x > y and abs(x) < abs(y):
            x, y = right(x, y)

    return x, y

def up(x, y):
    return x, y+1


def down(x, y):
    return x, y-1


def left(x, y):
    return x-1, y


def right(x, y):
    return x+1, y
三生路 2024-07-17 13:52:00

这是在 C 语言中。

我碰巧选择了错误的变量名。 在名称中 T == 顶部,L == 左侧,B == 底部,R == 右侧。 所以,tli 是左上角的 i,brj 是右下角的 j。

#include<stdio.h>

typedef enum {
   TLTOR = 0,
   RTTOB,
   BRTOL,
   LBTOT
} Direction;

int main() {
   int arr[][3] = {{1,2,3},{4,5,6}, {7,8,9}, {10,11,12}};
   int tli = 0, tlj = 0, bri = 3, brj = 2;
   int i;
   Direction d = TLTOR;

   while (tli < bri || tlj < brj) {
     switch (d) {
     case TLTOR:
    for (i = tlj; i <= brj; i++) {
       printf("%d ", arr[tli][i]);
    }
    tli ++;
    d = RTTOB;
    break;
     case RTTOB:
    for (i = tli; i <= bri; i++) {
       printf("%d ", arr[i][brj]);
    }
    brj --;
    d = BRTOL;
    break;
     case BRTOL:
    for (i = brj; i >= tlj; i--) {
       printf("%d ", arr[bri][i]);
    }
    bri --;
        d = LBTOT;
    break;
     case LBTOT:
    for (i = bri; i >= tli; i--) {
       printf("%d ", arr[i][tlj]);
    }
    tlj ++;
        d = TLTOR;
    break;
 }
   }
   if (tli == bri == tlj == brj) {
      printf("%d\n", arr[tli][tlj]);
   }
}

This is in C.

I happened to choose bad variable names. In the names T == top, L == left, B == bottom, R == right. So, tli is top left i and brj is bottom right j.

#include<stdio.h>

typedef enum {
   TLTOR = 0,
   RTTOB,
   BRTOL,
   LBTOT
} Direction;

int main() {
   int arr[][3] = {{1,2,3},{4,5,6}, {7,8,9}, {10,11,12}};
   int tli = 0, tlj = 0, bri = 3, brj = 2;
   int i;
   Direction d = TLTOR;

   while (tli < bri || tlj < brj) {
     switch (d) {
     case TLTOR:
    for (i = tlj; i <= brj; i++) {
       printf("%d ", arr[tli][i]);
    }
    tli ++;
    d = RTTOB;
    break;
     case RTTOB:
    for (i = tli; i <= bri; i++) {
       printf("%d ", arr[i][brj]);
    }
    brj --;
    d = BRTOL;
    break;
     case BRTOL:
    for (i = brj; i >= tlj; i--) {
       printf("%d ", arr[bri][i]);
    }
    bri --;
        d = LBTOT;
    break;
     case LBTOT:
    for (i = bri; i >= tli; i--) {
       printf("%d ", arr[i][tlj]);
    }
    tlj ++;
        d = TLTOR;
    break;
 }
   }
   if (tli == bri == tlj == brj) {
      printf("%d\n", arr[tli][tlj]);
   }
}
_蜘蛛 2024-07-17 13:52:00

我有一个开源库,pixelscan,它是一个Python库,提供函数以各种空间模式扫描网格上的像素。 包括的空间图案有圆形、环形、网格、蛇形和随机游走。 还有各种变换(例如,剪辑、交换、旋转、平移)。 原始的 OP 问题可以如下解决,

for x, y in clip(swap(ringscan(0, 0, 0, 2)), miny=-1, maxy=1):
    print x, y

产生点。

(0,0) (1,0) (1,1) (0,1) (-1,1) (-1,0) (-1,-1) (0,-1) (1,-1) (2,0) (2,1) (-2,1) (-2,0)
(-2,-1) (2,-1)

库生成器和转换可以链接起来,以各种顺序和空间模式改变点。

I have an open source library, pixelscan, that is a python library that provides functions to scan pixels on a grid in a variety of spatial patterns. Spatial patterns included are circular, rings, grids, snakes, and random walks. There are also various transformations (e.g., clip, swap, rotate, translate). The original OP problem can be solved as follows

for x, y in clip(swap(ringscan(0, 0, 0, 2)), miny=-1, maxy=1):
    print x, y

which yields the points

(0,0) (1,0) (1,1) (0,1) (-1,1) (-1,0) (-1,-1) (0,-1) (1,-1) (2,0) (2,1) (-2,1) (-2,0)
(-2,-1) (2,-1)

The libraries generators and transformations can be chained to change the points in a wide variety of orders and spatial patterns.

最美不过初阳 2024-07-17 13:52:00

下面是针对此问题的 JavaScript (ES6) 迭代解决方案:

let spiralMatrix = (x, y, step, count) => {
    let distance = 0;
    let range = 1;
    let direction = 'up';

    for ( let i = 0; i < count; i++ ) {
        console.log('x: '+x+', y: '+y);
        distance++;
        switch ( direction ) {
            case 'up':
                y += step;
                if ( distance >= range ) {
                    direction = 'right';
                    distance = 0;
                }
                break;
            case 'right':
                x += step;
                if ( distance >= range ) {
                    direction = 'bottom';
                    distance = 0;
                    range += 1;
                }
                break;
            case 'bottom':
                y -= step;
                if ( distance >= range ) {
                    direction = 'left';
                    distance = 0;
                }
                break;
            case 'left':
                x -= step;
                if ( distance >= range ) {
                    direction = 'up';
                    distance = 0;
                    range += 1;
                }
                break;
            default:
                break;
        }
    }
}

以下是如何使用它:

spiralMatrix(0, 0, 1, 100);

这将创建一个向外的螺旋,从坐标 (x = 0) 开始, y = 0),步长为 1,项目总数等于 100。实现始终按以下顺序开始移动 - 上、右、下、左。

请注意,此实现创建方阵。

Here's a JavaScript (ES6) iterative solution to this problem:

let spiralMatrix = (x, y, step, count) => {
    let distance = 0;
    let range = 1;
    let direction = 'up';

    for ( let i = 0; i < count; i++ ) {
        console.log('x: '+x+', y: '+y);
        distance++;
        switch ( direction ) {
            case 'up':
                y += step;
                if ( distance >= range ) {
                    direction = 'right';
                    distance = 0;
                }
                break;
            case 'right':
                x += step;
                if ( distance >= range ) {
                    direction = 'bottom';
                    distance = 0;
                    range += 1;
                }
                break;
            case 'bottom':
                y -= step;
                if ( distance >= range ) {
                    direction = 'left';
                    distance = 0;
                }
                break;
            case 'left':
                x -= step;
                if ( distance >= range ) {
                    direction = 'up';
                    distance = 0;
                    range += 1;
                }
                break;
            default:
                break;
        }
    }
}

Here's how to use it:

spiralMatrix(0, 0, 1, 100);

This will create an outward spiral, starting at coordinates (x = 0, y = 0) with step of 1 and a total number of items equals to 100. The implementation always starts the movement in the following order - up, right, bottom, left.

Please, note that this implementation creates square matrices.

鸠书 2024-07-17 13:52:00

这是 Python 3 中的一个解决方案,用于以螺旋顺时针和逆时针方向打印连续整数。

import math

def sp(n): # spiral clockwise
    a=[[0 for x in range(n)] for y in range(n)]
    last=1
    for k in range(n//2+1):
      for j in range(k,n-k):
          a[k][j]=last
          last+=1
      for i in range(k+1,n-k):
          a[i][j]=last
          last+=1
      for j in range(n-k-2,k-1,-1):
          a[i][j]=last
          last+=1
      for i in range(n-k-2,k,-1):
          a[i][j]=last
          last+=1

    s=int(math.log(n*n,10))+2 # compute size of cell for printing
    form="{:"+str(s)+"}"
    for i in range(n):
        for j in range(n):
            print(form.format(a[i][j]),end="")
        print("")

sp(3)
# 1 2 3
# 8 9 4
# 7 6 5

sp(4)
#  1  2  3  4
# 12 13 14  5
# 11 16 15  6
# 10  9  8  7

def sp_cc(n): # counterclockwise
    a=[[0 for x in range(n)] for y in range(n)]
    last=1
    for k in range(n//2+1):
      for j in range(n-k-1,k-1,-1):
          a[n-k-1][j]=last
          last+=1
      for i in range(n-k-2,k-1,-1):
          a[i][j]=last
          last+=1
      for j in range(k+1,n-k):
          a[i][j]=last
          last+=1
      for i in range(k+1,n-k-1):
          a[i][j]=last
          last+=1

    s=int(math.log(n*n,10))+2 # compute size of cell for printing
    form="{:"+str(s)+"}"
    for i in range(n):
        for j in range(n):
            print(form.format(a[i][j]),end="")
        print("")

sp_cc(5)
#  9 10 11 12 13
#  8 21 22 23 14
#  7 20 25 24 15
#  6 19 18 17 16
#  5  4  3  2  1

解释

螺旋由同心正方形组成,例如顺时针旋转的 5x5 正方形如下所示:(

 5x5        3x3      1x1

>>>>>
^   v       >>>
^   v   +   ^ v   +   >
^   v       <<<
<<<<v

>>>>> 表示“走 5” times right”或增加列索引 5 倍,v 表示向下或增加行索引等。)

所有方块的大小都相同,我在同心方块上循环。

对于每个方块,代码有四个循环(每边一个),在每个循环中我们增加或减少列或行索引。
如果 i 是行索引,j 是列索引,则可以通过以下方式构造 5x5 正方形:
- 将 j 从 0 增加到 4(5 次)
- 将i从1增加到4(4次)
- 将 j 从 3 递减至 0(4 次)
- 将i从3递减到1(3次)

对于接下来的方块(3x3和1x1),我们做同样的事情,但适当地移动初始和最终索引。
我对每个同心正方形使用了索引k,有n//2 + 1个同心正方形。

最后,一些关于漂亮打印的数学知识。

打印索引:

def spi_cc(n): # counter-clockwise
    a=[[0 for x in range(n)] for y in range(n)]
    ind=[]
    last=n*n
    for k in range(n//2+1):
      for j in range(n-k-1,k-1,-1):
          ind.append((n-k-1,j))
      for i in range(n-k-2,k-1,-1):
          ind.append((i,j))
      for j in range(k+1,n-k):
          ind.append((i,j))
      for i in range(k+1,n-k-1):
          ind.append((i,j))

    print(ind)

spi_cc(5)

Here's a solution in Python 3 for printing consecutive integers in a spiral clockwise and counterclockwise.

import math

def sp(n): # spiral clockwise
    a=[[0 for x in range(n)] for y in range(n)]
    last=1
    for k in range(n//2+1):
      for j in range(k,n-k):
          a[k][j]=last
          last+=1
      for i in range(k+1,n-k):
          a[i][j]=last
          last+=1
      for j in range(n-k-2,k-1,-1):
          a[i][j]=last
          last+=1
      for i in range(n-k-2,k,-1):
          a[i][j]=last
          last+=1

    s=int(math.log(n*n,10))+2 # compute size of cell for printing
    form="{:"+str(s)+"}"
    for i in range(n):
        for j in range(n):
            print(form.format(a[i][j]),end="")
        print("")

sp(3)
# 1 2 3
# 8 9 4
# 7 6 5

sp(4)
#  1  2  3  4
# 12 13 14  5
# 11 16 15  6
# 10  9  8  7

def sp_cc(n): # counterclockwise
    a=[[0 for x in range(n)] for y in range(n)]
    last=1
    for k in range(n//2+1):
      for j in range(n-k-1,k-1,-1):
          a[n-k-1][j]=last
          last+=1
      for i in range(n-k-2,k-1,-1):
          a[i][j]=last
          last+=1
      for j in range(k+1,n-k):
          a[i][j]=last
          last+=1
      for i in range(k+1,n-k-1):
          a[i][j]=last
          last+=1

    s=int(math.log(n*n,10))+2 # compute size of cell for printing
    form="{:"+str(s)+"}"
    for i in range(n):
        for j in range(n):
            print(form.format(a[i][j]),end="")
        print("")

sp_cc(5)
#  9 10 11 12 13
#  8 21 22 23 14
#  7 20 25 24 15
#  6 19 18 17 16
#  5  4  3  2  1

Explanation

A spiral is made of concentric squares, for instance a 5x5 square with clockwise rotation looks like this:

 5x5        3x3      1x1

>>>>>
^   v       >>>
^   v   +   ^ v   +   >
^   v       <<<
<<<<v

(>>>>> means "go 5 times right" or increase column index 5 times, v means down or increase row index, etc.)

All squares are the same up to their size, I looped over the concentric squares.

For each square the code has four loops (one for each side), in each loop we increase or decrease the columns or row index.
If i is the row index and j the column index then a 5x5 square can be constructed by:
- incrementing j from 0 to 4 (5 times)
- incrementing i from 1 to 4 (4 times)
- decrementing j from 3 to 0 (4 times)
- decrementing i from 3 to 1 (3 times)

For the next squares (3x3 and 1x1) we do the same but shift the initial and final indices appropriately.
I used an index k for each concentric square, there are n//2 + 1 concentric squares.

Finally, some math for pretty-printing.

To print the indexes:

def spi_cc(n): # counter-clockwise
    a=[[0 for x in range(n)] for y in range(n)]
    ind=[]
    last=n*n
    for k in range(n//2+1):
      for j in range(n-k-1,k-1,-1):
          ind.append((n-k-1,j))
      for i in range(n-k-2,k-1,-1):
          ind.append((i,j))
      for j in range(k+1,n-k):
          ind.append((i,j))
      for i in range(k+1,n-k-1):
          ind.append((i,j))

    print(ind)

spi_cc(5)
深白境迁sunset 2024-07-17 13:52:00

这是 c#,linq'ish。

public static class SpiralCoords
{
  public static IEnumerable<Tuple<int, int>> GenerateOutTo(int radius)
  {
    //TODO trap negative radius.  0 is ok.

    foreach(int r in Enumerable.Range(0, radius + 1))
    {
      foreach(Tuple<int, int> coord in GenerateRing(r))
      {
        yield return coord;
      }
    }
  }

  public static IEnumerable<Tuple<int, int>> GenerateRing(int radius)
  {
    //TODO trap negative radius.  0 is ok.

    Tuple<int, int> currentPoint = Tuple.Create(radius, 0);
    yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);

    //move up while we can
    while (currentPoint.Item2 < radius)
    {
      currentPoint.Item2 += 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
    //move left while we can
    while (-radius < currentPoint.Item1)
    {
      currentPoint.Item1 -=1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);    
    }
    //move down while we can
    while (-radius < currentPoint.Item2)
    {
      currentPoint.Item2 -= 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
    //move right while we can
    while (currentPoint.Item1 < radius)
    {
      currentPoint.Item1 +=1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);    
    }
    //move up while we can
    while (currentPoint.Item2 < -1)
    {
      currentPoint.Item2 += 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
  }

}

问题的第一个示例 (3x3) 为:

var coords = SpiralCoords.GenerateOutTo(1);

问题的第二个示例 (5x3) 为:

var coords = SpiralCoords.GenerateOutTo(2).Where(x => abs(x.Item2) < 2);

Here's c#, linq'ish.

public static class SpiralCoords
{
  public static IEnumerable<Tuple<int, int>> GenerateOutTo(int radius)
  {
    //TODO trap negative radius.  0 is ok.

    foreach(int r in Enumerable.Range(0, radius + 1))
    {
      foreach(Tuple<int, int> coord in GenerateRing(r))
      {
        yield return coord;
      }
    }
  }

  public static IEnumerable<Tuple<int, int>> GenerateRing(int radius)
  {
    //TODO trap negative radius.  0 is ok.

    Tuple<int, int> currentPoint = Tuple.Create(radius, 0);
    yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);

    //move up while we can
    while (currentPoint.Item2 < radius)
    {
      currentPoint.Item2 += 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
    //move left while we can
    while (-radius < currentPoint.Item1)
    {
      currentPoint.Item1 -=1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);    
    }
    //move down while we can
    while (-radius < currentPoint.Item2)
    {
      currentPoint.Item2 -= 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
    //move right while we can
    while (currentPoint.Item1 < radius)
    {
      currentPoint.Item1 +=1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);    
    }
    //move up while we can
    while (currentPoint.Item2 < -1)
    {
      currentPoint.Item2 += 1;
      yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
    }
  }

}

The question's first example (3x3) would be:

var coords = SpiralCoords.GenerateOutTo(1);

The question's second example (5x3) would be:

var coords = SpiralCoords.GenerateOutTo(2).Where(x => abs(x.Item2) < 2);
娇女薄笑 2024-07-17 13:52:00

这是一个略有不同的版本 - 尝试在 LUA 中使用递归迭代器。 在每一步中,程序都会在矩阵内进一步下降并循环。 我还为顺时针逆时针螺旋添加了一个额外的标志。 输出从右下角开始并向中心递归循环。

local row, col, clockwise

local SpiralGen
SpiralGen = function(loop)  -- Generator of elements in one loop
    local startpos = { x = col - loop, y = row - loop }
    local IteratePosImpl = function() -- This function calculates returns the cur, next position in a loop. If called without check, it loops infinitely

        local nextpos = {x = startpos.x, y = startpos.y}        
        local step = clockwise and {x = 0, y = -1} or { x = -1, y = 0 }

        return function()

            curpos = {x = nextpos.x, y = nextpos.y}
            nextpos.x = nextpos.x + step.x
            nextpos.y = nextpos.y + step.y
            if (((nextpos.x == loop or nextpos.x == col - loop + 1) and step.y == 0) or 
                ((nextpos.y == loop or nextpos.y == row - loop + 1) and step.x == 0)) then --Hit a corner in the loop

                local tempstep = {x = step.x, y = step.y}
                step.x = clockwise and tempstep.y or -tempstep.y
                step.y = clockwise and -tempstep.x or tempstep.x
                -- retract next step with new step
                nextpos.x = curpos.x + step.x 
                nextpos.y = curpos.y + step.y

            end         
            return curpos, nextpos
        end
    end
    local IteratePos = IteratePosImpl() -- make an instance
    local curpos, nextpos = IteratePos()
    while (true) do
        if(nextpos.x == startpos.x and nextpos.y == startpos.y) then            
            coroutine.yield(curpos)
            SpiralGen(loop+1) -- Go one step inner, since we're done with this loop
            break -- done with inner loop, get out
        else
            if(curpos.x < loop + 1 or curpos.x > col - loop or curpos.y < loop + 1 or curpos.y > row - loop) then
                break -- done with all elemnts, no place to loop further, break out of recursion
            else
                local curposL = {x = curpos.x, y = curpos.y}
                curpos, nextpos = IteratePos()
                coroutine.yield(curposL)
            end
        end     
    end 
end


local Spiral = function(rowP, colP, clockwiseP)
    row = rowP
    col = colP
    clockwise = clockwiseP
    return coroutine.wrap(function() SpiralGen(0) end) -- make a coroutine that returns all the values as an iterator
end


--test
for pos in Spiral(10,2,true) do
    print (pos.y, pos.x)
end

for pos in Spiral(10,9,false) do
    print (pos.y, pos.x)
end

This is a slightly different version - trying to use recursion and iterators in LUA. At each step the program descends further inside the matrix and loops. I also added an extra flag to spiral clockwise or anticlockwise. The output starts from the bottom right corners and loops recursively towards the center.

local row, col, clockwise

local SpiralGen
SpiralGen = function(loop)  -- Generator of elements in one loop
    local startpos = { x = col - loop, y = row - loop }
    local IteratePosImpl = function() -- This function calculates returns the cur, next position in a loop. If called without check, it loops infinitely

        local nextpos = {x = startpos.x, y = startpos.y}        
        local step = clockwise and {x = 0, y = -1} or { x = -1, y = 0 }

        return function()

            curpos = {x = nextpos.x, y = nextpos.y}
            nextpos.x = nextpos.x + step.x
            nextpos.y = nextpos.y + step.y
            if (((nextpos.x == loop or nextpos.x == col - loop + 1) and step.y == 0) or 
                ((nextpos.y == loop or nextpos.y == row - loop + 1) and step.x == 0)) then --Hit a corner in the loop

                local tempstep = {x = step.x, y = step.y}
                step.x = clockwise and tempstep.y or -tempstep.y
                step.y = clockwise and -tempstep.x or tempstep.x
                -- retract next step with new step
                nextpos.x = curpos.x + step.x 
                nextpos.y = curpos.y + step.y

            end         
            return curpos, nextpos
        end
    end
    local IteratePos = IteratePosImpl() -- make an instance
    local curpos, nextpos = IteratePos()
    while (true) do
        if(nextpos.x == startpos.x and nextpos.y == startpos.y) then            
            coroutine.yield(curpos)
            SpiralGen(loop+1) -- Go one step inner, since we're done with this loop
            break -- done with inner loop, get out
        else
            if(curpos.x < loop + 1 or curpos.x > col - loop or curpos.y < loop + 1 or curpos.y > row - loop) then
                break -- done with all elemnts, no place to loop further, break out of recursion
            else
                local curposL = {x = curpos.x, y = curpos.y}
                curpos, nextpos = IteratePos()
                coroutine.yield(curposL)
            end
        end     
    end 
end


local Spiral = function(rowP, colP, clockwiseP)
    row = rowP
    col = colP
    clockwise = clockwiseP
    return coroutine.wrap(function() SpiralGen(0) end) -- make a coroutine that returns all the values as an iterator
end


--test
for pos in Spiral(10,2,true) do
    print (pos.y, pos.x)
end

for pos in Spiral(10,9,false) do
    print (pos.y, pos.x)
end
御弟哥哥 2024-07-17 13:52:00

//PHP实现

function spiral($n) {

    $r = intval((sqrt($n + 1) - 1) / 2) + 1;

    // compute radius : inverse arithmetic sum of 8+16+24+...=
    $p = (8 * $r * ($r - 1)) / 2;
    // compute total point on radius -1 : arithmetic sum of 8+16+24+...

    $en = $r * 2;
    // points by face

    $a = (1 + $n - $p) % ($r * 8);
    // compute de position and shift it so the first is (-r,-r) but (-r+1,-r)
    // so square can connect

    $pos = array(0, 0, $r);
    switch (intval($a / ($r * 2))) {
        // find the face : 0 top, 1 right, 2, bottom, 3 left
        case 0:
            $pos[0] = $a - $r;
            $pos[1] = -$r;
            break;
        case 1:
            $pos[0] = $r;
            $pos[1] = ($a % $en) - $r;
            break;
        case 2:
            $pos[0] = $r - ($a % $en);
            $pos[1] = $r;
            break;
        case 3:
            $pos[0] = -$r;
            $pos[1] = $r - ($a % $en);
            break;
    }
    return $pos;
}

for ($i = 0; $i < 168; $i++) {

    echo '<pre>';
    print_r(spiral($i));
    echo '</pre>';
}

//PHP implementation

function spiral($n) {

    $r = intval((sqrt($n + 1) - 1) / 2) + 1;

    // compute radius : inverse arithmetic sum of 8+16+24+...=
    $p = (8 * $r * ($r - 1)) / 2;
    // compute total point on radius -1 : arithmetic sum of 8+16+24+...

    $en = $r * 2;
    // points by face

    $a = (1 + $n - $p) % ($r * 8);
    // compute de position and shift it so the first is (-r,-r) but (-r+1,-r)
    // so square can connect

    $pos = array(0, 0, $r);
    switch (intval($a / ($r * 2))) {
        // find the face : 0 top, 1 right, 2, bottom, 3 left
        case 0:
            $pos[0] = $a - $r;
            $pos[1] = -$r;
            break;
        case 1:
            $pos[0] = $r;
            $pos[1] = ($a % $en) - $r;
            break;
        case 2:
            $pos[0] = $r - ($a % $en);
            $pos[1] = $r;
            break;
        case 3:
            $pos[0] = -$r;
            $pos[1] = $r - ($a % $en);
            break;
    }
    return $pos;
}

for ($i = 0; $i < 168; $i++) {

    echo '<pre>';
    print_r(spiral($i));
    echo '</pre>';
}
清风挽心 2024-07-17 13:52:00

C# 版本,也可以处理非方形尺寸。

private static Point[] TraverseSpiral(int width, int height) {
    int numElements = width * height + 1;
    Point[] points = new Point[numElements];

    int x = 0;
    int y = 0;
    int dx = 1;
    int dy = 0;
    int xLimit = width - 0;
    int yLimit = height - 1;
    int counter = 0;

    int currentLength = 1;
    while (counter < numElements) {
        points[counter] = new Point(x, y);

        x += dx;
        y += dy;

        currentLength++;
        if (dx > 0) {
            if (currentLength >= xLimit) {
                dx = 0;
                dy = 1;
                xLimit--;
                currentLength = 0;
            }
        } else if (dy > 0) {
            if (currentLength >= yLimit) {
                dx = -1;
                dy = 0;
                yLimit--;
                currentLength = 0;
            }
        } else if (dx < 0) {
            if (currentLength >= xLimit) {
                dx = 0;
                dy = -1;
                xLimit--;
                currentLength = 0;
            }
        } else if (dy < 0) {
            if (currentLength >= yLimit) {
                dx = 1;
                dy = 0;
                yLimit--;
                currentLength = 0;
            }
        }

        counter++;
    }

    Array.Reverse(points);
    return points;
}

C# version, handles non-square sizes as well.

private static Point[] TraverseSpiral(int width, int height) {
    int numElements = width * height + 1;
    Point[] points = new Point[numElements];

    int x = 0;
    int y = 0;
    int dx = 1;
    int dy = 0;
    int xLimit = width - 0;
    int yLimit = height - 1;
    int counter = 0;

    int currentLength = 1;
    while (counter < numElements) {
        points[counter] = new Point(x, y);

        x += dx;
        y += dy;

        currentLength++;
        if (dx > 0) {
            if (currentLength >= xLimit) {
                dx = 0;
                dy = 1;
                xLimit--;
                currentLength = 0;
            }
        } else if (dy > 0) {
            if (currentLength >= yLimit) {
                dx = -1;
                dy = 0;
                yLimit--;
                currentLength = 0;
            }
        } else if (dx < 0) {
            if (currentLength >= xLimit) {
                dx = 0;
                dy = -1;
                xLimit--;
                currentLength = 0;
            }
        } else if (dy < 0) {
            if (currentLength >= yLimit) {
                dx = 1;
                dy = 0;
                yLimit--;
                currentLength = 0;
            }
        }

        counter++;
    }

    Array.Reverse(points);
    return points;
}
零時差 2024-07-17 13:52:00

这是 Julia 的答案:我的方法是在原点 (0,0) 周围分配同心正方形(“螺旋”)中的点,其中每个正方形的边长 m = 2n + 1,生成一个有序字典,以位置编号(从 1 开始为原点)为键,以相应的坐标为值。

由于每个螺旋的最大位置位于(n,-n),因此可以通过简单地从该点向后计算来找到其余点,即从右下角开始m- 1 单位,然后重复垂直 3 段 m-1 单位。

下面以倒序的方式写这个过程,对应的是螺旋如何进行,而不是这个反向计数过程,即ra[右升]段递减3(m+1)< /code>,然后 la [左升序] by 2(m+1),依此类推 - 希望这是不言自明的。

import DataStructures: OrderedDict, merge

function spiral(loc::Int)
    s = sqrt(loc-1) |> floor |> Int
    if s % 2 == 0
        s -= 1
    end
    s = (s+1)/2 |> Int
    return s
end

function perimeter(n::Int)
    n > 0 || return OrderedDict([1,[0,0]])
    m = 2n + 1 # width/height of the spiral [square] indexed by n
    # loc_max = m^2
    # loc_min = (2n-1)^2 + 1
    ra = [[m^2-(y+3m-3), [n,n-y]] for y in (m-2):-1:0]
    la = [[m^2-(y+2m-2), [y-n,n]] for y in (m-2):-1:0]
    ld = [[m^2-(y+m-1), [-n,y-n]] for y in (m-2):-1:0]
    rd = [[m^2-y, [n-y,-n]] for y in (m-2):-1:0]
    return OrderedDict(vcat(ra,la,ld,rd))
end

function walk(n)
    cds = OrderedDict(1 => [0,0])
    n > 0 || return cds
    for i in 1:n
        cds = merge(cds, perimeter(i))
    end
    return cds
end

因此,对于第一个示例,将 m = 3 代入方程以查找 n 给出 n = (5-1)/2 = 2walk(2 ) 给出坐标位置的有序字典,您可以通过访问字典的 vals 字段将其转换为坐标数组:

walk(2)
DataStructures.OrderedDict{Any,Any} with 25 entries:
  1  => [0,0]
  2  => [1,0]
  3  => [1,1]
  4  => [0,1]
  ⋮  => ⋮

[(co[1],co[2]) for co in walk(2).vals]
25-element Array{Tuple{Int64,Int64},1}:
 (0,0)  
 (1,0)  
 ⋮       
 (1,-2) 
 (2,-2)

请注意,对于某些函数 [例如 norm< /code>] 最好将坐标保留在数组中,而不是 Tuple{Int,Int},但这里我将它们更改为元组 -(x,y) ——根据要求,使用列表理解。

未指定“支持”非方矩阵的上下文(请注意,此解决方案仍然计算离网值),但如果您只想过滤到范围 x by y(此处表示 x=5y=3)计算完整螺旋后,然后将此矩阵与值相交从步行

grid = [[x,y] for x in -2:2, y in -1:1]
5×3 Array{Array{Int64,1},2}:
 [-2,-1]  [-2,0]  [-2,1]
   ⋮       ⋮       ⋮ 
 [2,-1]   [2,0]   [2,1]

[(co[1],co[2]) for co in intersect(walk(2).vals, grid)]
15-element Array{Tuple{Int64,Int64},1}:
 (0,0)  
 (1,0)  
 ⋮ 
 (-2,0) 
 (-2,-1)

Here's an answer in Julia: my approach is to assign the points in concentric squares ('spirals') around the origin (0,0), where each square has side length m = 2n + 1, to produce an ordered dictionary with location numbers (starting from 1 for the origin) as keys and the corresponding coordinate as value.

Since the maximum location per spiral is at (n,-n), the rest of the points can be found by simply working backward from this point, i.e. from the bottom right corner by m-1 units, then repeating for the perpendicular 3 segments of m-1 units.

This process is written in reverse order below, corresponding to how the spiral proceeds rather than this reverse counting process, i.e. the ra [right ascending] segment is decremented by 3(m+1), then la [left ascending] by 2(m+1), and so on - hopefully this is self-explanatory.

import DataStructures: OrderedDict, merge

function spiral(loc::Int)
    s = sqrt(loc-1) |> floor |> Int
    if s % 2 == 0
        s -= 1
    end
    s = (s+1)/2 |> Int
    return s
end

function perimeter(n::Int)
    n > 0 || return OrderedDict([1,[0,0]])
    m = 2n + 1 # width/height of the spiral [square] indexed by n
    # loc_max = m^2
    # loc_min = (2n-1)^2 + 1
    ra = [[m^2-(y+3m-3), [n,n-y]] for y in (m-2):-1:0]
    la = [[m^2-(y+2m-2), [y-n,n]] for y in (m-2):-1:0]
    ld = [[m^2-(y+m-1), [-n,y-n]] for y in (m-2):-1:0]
    rd = [[m^2-y, [n-y,-n]] for y in (m-2):-1:0]
    return OrderedDict(vcat(ra,la,ld,rd))
end

function walk(n)
    cds = OrderedDict(1 => [0,0])
    n > 0 || return cds
    for i in 1:n
        cds = merge(cds, perimeter(i))
    end
    return cds
end

So for your first example, plugging m = 3 into the equation to find n gives n = (5-1)/2 = 2, and walk(2) gives an ordered dictionary of locations to coordinates, which you can turn into just an array of coordinates by accessing the dictionary's vals field:

walk(2)
DataStructures.OrderedDict{Any,Any} with 25 entries:
  1  => [0,0]
  2  => [1,0]
  3  => [1,1]
  4  => [0,1]
  ⋮  => ⋮

[(co[1],co[2]) for co in walk(2).vals]
25-element Array{Tuple{Int64,Int64},1}:
 (0,0)  
 (1,0)  
 ⋮       
 (1,-2) 
 (2,-2)

Note that for some functions [e.g. norm] it can be preferable to leave the coordinates in arrays rather than Tuple{Int,Int}, but here I change them into tuples—(x,y)—as requested, using list comprehension.

The context for "supporting" a non-square matrix isn't specified (note that this solution still calculates the off-grid values), but if you want to filter to only the range x by y (here for x=5,y=3) after calculating the full spiral then intersect this matrix against the values from walk.

grid = [[x,y] for x in -2:2, y in -1:1]
5×3 Array{Array{Int64,1},2}:
 [-2,-1]  [-2,0]  [-2,1]
   ⋮       ⋮       ⋮ 
 [2,-1]   [2,0]   [2,1]

[(co[1],co[2]) for co in intersect(walk(2).vals, grid)]
15-element Array{Tuple{Int64,Int64},1}:
 (0,0)  
 (1,0)  
 ⋮ 
 (-2,0) 
 (-2,-1)
决绝 2024-07-17 13:52:00

这是基于您自己的解决方案,但我们可以更聪明地找到角落。 如果 M 和 N 差异很大,这样可以更轻松地了解如何跳过外部区域。

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = -1
    s=0
    ds=2
    for i in range(max(X, Y)**2):
            if abs(x) <= X and abs(y) <= Y/2:
                    print (x, y)
                    # DO STUFF...
            if i==s:
                    dx, dy = -dy, dx
                    s, ds = s+ds/2, ds+1
            x, y = x+dx, y+dy

基于生成器的解决方案优于 O(max(n,m)^2),它是 O(nm+abs(nm)^2),因为如果它们不是解决方案的一部分,它会跳过整个条带。

def spiral(X,Y):
X = X+1>>1
Y = Y+1>>1
x = y = 0
d = side = 1
while x<X or y<Y:
    if abs(y)<Y:
        for x in range(x, x+side, d):
            if abs(x)<X: yield x,y
        x += d
    else:
        x += side
    if abs(x)<X:
        for y in range(y, y+side, d):
            if abs(y)<Y: yield x,y
        y += d
    else:
        y += side
    d =-d
    side = d-side

This is based on your own solution, but we can be smarter about finding the corners. This makes it easier to see how you might skip over the areas outside if M and N are very different.

def spiral(X, Y):
    x = y = 0
    dx = 0
    dy = -1
    s=0
    ds=2
    for i in range(max(X, Y)**2):
            if abs(x) <= X and abs(y) <= Y/2:
                    print (x, y)
                    # DO STUFF...
            if i==s:
                    dx, dy = -dy, dx
                    s, ds = s+ds/2, ds+1
            x, y = x+dx, y+dy

and a generator based solution that is better than O(max(n,m)^2), It is O(nm+abs(n-m)^2) because it skips whole strips if they are not part of the solution.

def spiral(X,Y):
X = X+1>>1
Y = Y+1>>1
x = y = 0
d = side = 1
while x<X or y<Y:
    if abs(y)<Y:
        for x in range(x, x+side, d):
            if abs(x)<X: yield x,y
        x += d
    else:
        x += side
    if abs(x)<X:
        for y in range(y, y+side, d):
            if abs(y)<Y: yield x,y
        y += d
    else:
        y += side
    d =-d
    side = d-side
缱倦旧时光 2024-07-17 13:52:00
Here is my attempt for simple C solution. First print the outer spiral and move one block inside..and repeat.

#define ROWS        5
#define COLS        5
//int A[ROWS][COLS] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {11, 12, 13, 14}, {15, 16, 17, 18} };
//int A[ROWS][COLS] = { {1, 2, 3}, {6, 7, 8}, { 12, 13, 14} };
//int A[ROWS][COLS] = { {1, 2}, {3, 4}};

int A[ROWS][COLS] = { {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15} , {16, 17, 18, 19, 20}, {21, 22, 23, 24, 25} };


void print_spiral(int rows, int cols)
{
    int row = 0;
    int offset = 0;

    while (offset < (ROWS - 1)) {
        /* print one outer loop at a time. */
        for (int col = offset; col <= cols; col++) {
            printf("%d ", A[offset][col]);
        }

        for (row = offset + 1; row <= rows; row++) {
            printf("%d ", A[row][cols]);
        }

        for (int col = cols - 1; col >= offset; col--) {
            printf("%d ", A[rows][col]);
        }

        for (row = rows - 1; row >= offset + 1; row--) {
            printf("%d ", A[row][offset]);
        }

       /* Move one block inside */
        offset++;
        rows--;
        cols--;
    }
    printf("\n");
}

int _tmain(int argc, _TCHAR* argv[])
{
    print_spiral(ROWS-1, COLS-1);
    return 0;
}
Here is my attempt for simple C solution. First print the outer spiral and move one block inside..and repeat.

#define ROWS        5
#define COLS        5
//int A[ROWS][COLS] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {11, 12, 13, 14}, {15, 16, 17, 18} };
//int A[ROWS][COLS] = { {1, 2, 3}, {6, 7, 8}, { 12, 13, 14} };
//int A[ROWS][COLS] = { {1, 2}, {3, 4}};

int A[ROWS][COLS] = { {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15} , {16, 17, 18, 19, 20}, {21, 22, 23, 24, 25} };


void print_spiral(int rows, int cols)
{
    int row = 0;
    int offset = 0;

    while (offset < (ROWS - 1)) {
        /* print one outer loop at a time. */
        for (int col = offset; col <= cols; col++) {
            printf("%d ", A[offset][col]);
        }

        for (row = offset + 1; row <= rows; row++) {
            printf("%d ", A[row][cols]);
        }

        for (int col = cols - 1; col >= offset; col--) {
            printf("%d ", A[rows][col]);
        }

        for (row = rows - 1; row >= offset + 1; row--) {
            printf("%d ", A[row][offset]);
        }

       /* Move one block inside */
        offset++;
        rows--;
        cols--;
    }
    printf("\n");
}

int _tmain(int argc, _TCHAR* argv[])
{
    print_spiral(ROWS-1, COLS-1);
    return 0;
}
离不开的别离 2024-07-17 13:52:00

这是我非常非常糟糕的解决方案,仅使用最基本的 Java 知识。 在这里,我必须将单位放置在螺旋形的区域上。 单位不能放置在其他单位的顶部、山上或海洋中。

要明确一点。 这不是一个好的解决方案。 这是一个非常糟糕的解决方案,是为了让其他人嘲笑它做得有多糟糕而添加的乐趣

private void unitPlacementAlgorithm(Position p, Unit u){
    int i = p.getRow();
    int j = p.getColumn();

    int iCounter = 1;
    int jCounter = 0;

    if (getUnitAt(p) == null) {
            unitMap.put(p, u);
    } else {
        iWhileLoop(i, j, iCounter, jCounter, -1, u);
    }

}

private void iWhileLoop(int i, int j, int iCounter, int jCounter, int fortegn, Unit u){
    if(iCounter == 3) {
        for(int k = 0; k < 3; k++) {
            if(k == 2) { //This was added to make the looping stop after 9 units
                System.out.println("There is no more room around the city");
                return; 
            }
            i--;

            if (getUnitAt(new Position(i, j)) == null 
                && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
                && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                    unitMap.put(new Position(i, j), u);
                    return;
            }
            iCounter--;
        }
    }

    while (iCounter > 0) {
        if (fortegn > 0) {
            i++;
        } else {
            i--;
        }

        if (getUnitAt(new Position(i, j)) == null 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                unitMap.put(new Position(i, j), u);
                return;
        }
        iCounter--;
        jCounter++;
    }
    fortegn *= -1;
    jWhileLoop(i, j, iCounter, jCounter, fortegn, u);
}

private void jWhileLoop(int i, int j, int iCounter, int jCounter,
        int fortegn, Unit u) {
    while (jCounter > 0) {
        if (fortegn > 0) {
            j++;
        } else {
            j--;
        }

        if (getUnitAt(new Position(i, j)) == null 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                unitMap.put(new Position(i, j), u);
                return;

        }
        jCounter--;
        iCounter++;
        if (jCounter == 0) {
            iCounter++;
        }

    }
    iWhileLoop(i, j, iCounter, jCounter, fortegn, u);
}

感谢任何能够真正阅读此

奖金问题:这个“算法”的运行时间是多少? :P

This is my very very bad solution, made from bare minimum knowledge of Java. Here I have to place units on a field in a spiral. Units cannot be placed on top of other units or on mountains or in the ocean.

To be clear. This is not a good solution. This is a very bad solution added for the fun of other people to laugh at how bad it can be done

private void unitPlacementAlgorithm(Position p, Unit u){
    int i = p.getRow();
    int j = p.getColumn();

    int iCounter = 1;
    int jCounter = 0;

    if (getUnitAt(p) == null) {
            unitMap.put(p, u);
    } else {
        iWhileLoop(i, j, iCounter, jCounter, -1, u);
    }

}

private void iWhileLoop(int i, int j, int iCounter, int jCounter, int fortegn, Unit u){
    if(iCounter == 3) {
        for(int k = 0; k < 3; k++) {
            if(k == 2) { //This was added to make the looping stop after 9 units
                System.out.println("There is no more room around the city");
                return; 
            }
            i--;

            if (getUnitAt(new Position(i, j)) == null 
                && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
                && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                    unitMap.put(new Position(i, j), u);
                    return;
            }
            iCounter--;
        }
    }

    while (iCounter > 0) {
        if (fortegn > 0) {
            i++;
        } else {
            i--;
        }

        if (getUnitAt(new Position(i, j)) == null 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                unitMap.put(new Position(i, j), u);
                return;
        }
        iCounter--;
        jCounter++;
    }
    fortegn *= -1;
    jWhileLoop(i, j, iCounter, jCounter, fortegn, u);
}

private void jWhileLoop(int i, int j, int iCounter, int jCounter,
        int fortegn, Unit u) {
    while (jCounter > 0) {
        if (fortegn > 0) {
            j++;
        } else {
            j--;
        }

        if (getUnitAt(new Position(i, j)) == null 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS)) 
            && !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
                unitMap.put(new Position(i, j), u);
                return;

        }
        jCounter--;
        iCounter++;
        if (jCounter == 0) {
            iCounter++;
        }

    }
    iWhileLoop(i, j, iCounter, jCounter, fortegn, u);
}

Cudos to anyone who can actually read this

Bonus question: What is the running time of this "algorithm"? :P

心舞飞扬 2024-07-17 13:52:00

AutoIt 解决方案

#include <Math.au3>
#include <Array.au3>

Func SpiralSearch($xMax,$yMax)
    $x = 0
    $y = 0
    $dx = 0
    $dy = -1
    for $i=0 To _max($xMax, $yMax)^2-1 Step 1
        if -$xMax/2 < $x and $x <= $xMax/2 And -$yMax/2 < $y And $y <= $yMax/2 Then
            MsgBox(0, "We are here ", $x & " " & $y)
        EndIf
        if $x == $y or ($x < 0 and $x == -$y) or ($x > 0 and $x == 1-$y) Then
            _ArraySwap ($dx, $dy)
            $dx=-$dx
        EndIf
        $x += $dx
        $y += $dy
    Next
EndFunc

Solution for AutoIt

#include <Math.au3>
#include <Array.au3>

Func SpiralSearch($xMax,$yMax)
    $x = 0
    $y = 0
    $dx = 0
    $dy = -1
    for $i=0 To _max($xMax, $yMax)^2-1 Step 1
        if -$xMax/2 < $x and $x <= $xMax/2 And -$yMax/2 < $y And $y <= $yMax/2 Then
            MsgBox(0, "We are here ", $x & " " & $y)
        EndIf
        if $x == $y or ($x < 0 and $x == -$y) or ($x > 0 and $x == 1-$y) Then
            _ArraySwap ($dx, $dy)
            $dx=-$dx
        EndIf
        $x += $dx
        $y += $dy
    Next
EndFunc
白首有我共你 2024-07-17 13:52:00

我最近遇到了类似的挑战,我必须创建一个二维数组并使用螺旋矩阵算法来排序和打印结果。 此 C# 代码适用于 N,N 2D 数组。 为了清晰起见,它很冗长,并且可以进行重构以满足您的需求。

//CREATE A NEW MATRIX OF SIZE 4 ROWS BY 4 COLUMNS - SCALE MATRIX SIZE HERE
SpiralMatrix SM = new SpiralMatrix(4, 4);
string myData = SM.Read();


public class SpiralMatrix
{
    //LETS BUILD A NEW MATRIX EVERY TIME WE INSTANTIATE OUR CLASS
    public SpiralMatrix(int Rows, int Cols)
    {
        Matrix = new String[Rows, Cols];

        int pos = 1;
        for(int r = 0; r<Rows; r++){
            for (int c = 0; c < Cols; c++)
            {
                //POPULATE THE MATRIX WITH THE CORRECT ROW,COL COORDINATE
                Matrix[r, c] = pos.ToString();
                pos++;
            }
        }
    }

    //READ MATRIX
    public string Read()
    {
        int Row = 0;
        int Col = 0;

        string S = "";
        bool isDone = false;

        //CHECK tO SEE IF POSITION ZERO IS AVAILABLE
        if(PosAvailable(Row, Col)){
            S = ConsumePos(Row, Col);
        }


        //START READING SPIRAL
        //THIS BLOCK READS A FULL CYCLE OF RIGHT,DOWN,LEFT,UP EVERY ITERATION
        while(!isDone)
        {
            bool goNext = false;

            //READ ALL RIGHT SPACES ON THIS PATH PROGRESSION
            while (PosAvailable(Row, Col+1))
            {
                //Is ReadRight Avail
                Col++;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL DOWN SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row+1, Col)){
                //Is ReadDown Avail
                Row++;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL LEFT SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row, Col-1)){
                //Is ReadLeft Avail
                Col--;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL UP SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row-1, Col)){
                //Is ReadUp Avail
                Row--;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            if(!goNext){
                //DONE - SET EXIT LOOP FLAG
                isDone = true;
            }
        }

        return S;
    }

    //DETERMINE IF THE POSITION IS AVAILABLE
    public bool PosAvailable(int Row, int Col)
    {
        //MAKE SURE WE ARE WITHIN THE BOUNDS OF THE ARRAY
        if (Row < Matrix.GetLength(0) && Row >= 0
            && Col < Matrix.GetLength(1) && Col >= 0)
        {
            //CHECK COORDINATE VALUE
            if (Matrix[Row, Col] != ConsumeChar)
                return true;
            else
                return false;
        }
        else
        {
            //WE ARE OUT OF BOUNDS
            return false;
        }
    }

    public string ConsumePos(int Row, int Col)
    {
        string n = Matrix[Row, Col];
        Matrix[Row, Col] = ConsumeChar;
        return n;
    }

    public string ConsumeChar = "X";
    public string[,] Matrix;
}

I recently had a similar challenge where I had to create a 2D array and use a spiral matrix algorithm to sort and print the results. This C# code will work with a N,N 2D array. It is verbose for clarity and can likely be re-factored to fit your needs.

//CREATE A NEW MATRIX OF SIZE 4 ROWS BY 4 COLUMNS - SCALE MATRIX SIZE HERE
SpiralMatrix SM = new SpiralMatrix(4, 4);
string myData = SM.Read();


public class SpiralMatrix
{
    //LETS BUILD A NEW MATRIX EVERY TIME WE INSTANTIATE OUR CLASS
    public SpiralMatrix(int Rows, int Cols)
    {
        Matrix = new String[Rows, Cols];

        int pos = 1;
        for(int r = 0; r<Rows; r++){
            for (int c = 0; c < Cols; c++)
            {
                //POPULATE THE MATRIX WITH THE CORRECT ROW,COL COORDINATE
                Matrix[r, c] = pos.ToString();
                pos++;
            }
        }
    }

    //READ MATRIX
    public string Read()
    {
        int Row = 0;
        int Col = 0;

        string S = "";
        bool isDone = false;

        //CHECK tO SEE IF POSITION ZERO IS AVAILABLE
        if(PosAvailable(Row, Col)){
            S = ConsumePos(Row, Col);
        }


        //START READING SPIRAL
        //THIS BLOCK READS A FULL CYCLE OF RIGHT,DOWN,LEFT,UP EVERY ITERATION
        while(!isDone)
        {
            bool goNext = false;

            //READ ALL RIGHT SPACES ON THIS PATH PROGRESSION
            while (PosAvailable(Row, Col+1))
            {
                //Is ReadRight Avail
                Col++;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL DOWN SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row+1, Col)){
                //Is ReadDown Avail
                Row++;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL LEFT SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row, Col-1)){
                //Is ReadLeft Avail
                Col--;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            //READ ALL UP SPACES ON THIS PATH PROGRESSION
            while(PosAvailable(Row-1, Col)){
                //Is ReadUp Avail
                Row--;
                S += ConsumePos(Row, Col);
                goNext = true;
            }

            if(!goNext){
                //DONE - SET EXIT LOOP FLAG
                isDone = true;
            }
        }

        return S;
    }

    //DETERMINE IF THE POSITION IS AVAILABLE
    public bool PosAvailable(int Row, int Col)
    {
        //MAKE SURE WE ARE WITHIN THE BOUNDS OF THE ARRAY
        if (Row < Matrix.GetLength(0) && Row >= 0
            && Col < Matrix.GetLength(1) && Col >= 0)
        {
            //CHECK COORDINATE VALUE
            if (Matrix[Row, Col] != ConsumeChar)
                return true;
            else
                return false;
        }
        else
        {
            //WE ARE OUT OF BOUNDS
            return false;
        }
    }

    public string ConsumePos(int Row, int Col)
    {
        string n = Matrix[Row, Col];
        Matrix[Row, Col] = ConsumeChar;
        return n;
    }

    public string ConsumeChar = "X";
    public string[,] Matrix;
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文