判断两个矩形是否重叠?

发布于 2024-07-09 08:47:45 字数 949 浏览 18 评论 0原文

我正在尝试编写一个 C++ 程序,它接受用户的以下输入来构造矩形(2 到 5 之间):高度、宽度、x 位置、y 位置。 所有这些矩形都将平行于 x 轴和 y 轴存在,即它们的所有边都将具有 0 或无穷大的斜率。

我尝试实现 this 问题中提到的内容,但我运气不佳。

我当前的实现执行以下操作:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

但是,我不太确定是否(a)我已经正确实现了链接到的算法,或者我是否准确地解释了这一点?

有什么建议么?

I am trying to write a C++ program that takes the following inputs from the user to construct rectangles (between 2 and 5): height, width, x-pos, y-pos. All of these rectangles will exist parallel to the x and the y axis, that is all of their edges will have slopes of 0 or infinity.

I've tried to implement what is mentioned in this question but I am not having very much luck.

My current implementation does the following:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

However I'm not quite sure if (a) I've implemented the algorithm I linked to correctly, or if I did exactly how to interpret this?

Any suggestions?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(21

闻呓 2024-07-16 08:47:46
struct rect
{
    int x;
    int y;
    int width;
    int height;
};

bool valueInRange(int value, int min, int max)
{ return (value >= min) && (value <= max); }

bool rectOverlap(rect A, rect B)
{
    bool xOverlap = valueInRange(A.x, B.x, B.x + B.width) ||
                    valueInRange(B.x, A.x, A.x + A.width);

    bool yOverlap = valueInRange(A.y, B.y, B.y + B.height) ||
                    valueInRange(B.y, A.y, A.y + A.height);

    return xOverlap && yOverlap;
}
struct rect
{
    int x;
    int y;
    int width;
    int height;
};

bool valueInRange(int value, int min, int max)
{ return (value >= min) && (value <= max); }

bool rectOverlap(rect A, rect B)
{
    bool xOverlap = valueInRange(A.x, B.x, B.x + B.width) ||
                    valueInRange(B.x, A.x, A.x + A.width);

    bool yOverlap = valueInRange(A.y, B.y, B.y + B.height) ||
                    valueInRange(B.y, A.y, A.y + A.height);

    return xOverlap && yOverlap;
}
草莓酥 2024-07-16 08:47:46
struct Rect
{
    Rect(int x1, int x2, int y1, int y2)
    : x1(x1), x2(x2), y1(y1), y2(y2)
    {
        assert(x1 < x2);
        assert(y1 < y2);
    }

    int x1, x2, y1, y2;
};

bool
overlap(const Rect &r1, const Rect &r2)
{
    // The rectangles don't overlap if
    // one rectangle's minimum in some dimension 
    // is greater than the other's maximum in
    // that dimension.

    bool noOverlap = r1.x1 > r2.x2 ||
                     r2.x1 > r1.x2 ||
                     r1.y1 > r2.y2 ||
                     r2.y1 > r1.y2;

    return !noOverlap;
}
struct Rect
{
    Rect(int x1, int x2, int y1, int y2)
    : x1(x1), x2(x2), y1(y1), y2(y2)
    {
        assert(x1 < x2);
        assert(y1 < y2);
    }

    int x1, x2, y1, y2;
};

bool
overlap(const Rect &r1, const Rect &r2)
{
    // The rectangles don't overlap if
    // one rectangle's minimum in some dimension 
    // is greater than the other's maximum in
    // that dimension.

    bool noOverlap = r1.x1 > r2.x2 ||
                     r2.x1 > r1.x2 ||
                     r1.y1 > r2.y2 ||
                     r2.y1 > r1.y2;

    return !noOverlap;
}
给我一枪 2024-07-16 08:47:46

检查一个矩形是否完全在另一个矩形之外更容易,因此如果它位于

左侧...

(r1.x + r1.width < r2.x)

或右侧...

(r1.x > r2.x + r2.width)

或顶部...

(r1.y + r1.height < r2.y)

或底部...

(r1.y > r2.y + r2.height)

第二个矩形的 ,它不可能与它相撞。 因此,要拥有一个返回布尔值表示矩形是否发生碰撞的函数,我们只需通过逻辑或组合条件并对结果取反:

function checkOverlap(r1, r2) : Boolean
{ 
    return !(r1.x + r1.width < r2.x || r1.y + r1.height < r2.y || r1.x > r2.x + r2.width || r1.y > r2.y + r2.height);
}

要仅在触摸时就已经收到正结果,我们可以更改“<” 和“>” 通过“<=”和“>=”。

It is easier to check if a rectangle is completly outside the other, so if it is either

on the left...

(r1.x + r1.width < r2.x)

or on the right...

(r1.x > r2.x + r2.width)

or on top...

(r1.y + r1.height < r2.y)

or on the bottom...

(r1.y > r2.y + r2.height)

of the second rectangle, it cannot possibly collide with it. So to have a function that returns a Boolean saying weather the rectangles collide, we simply combine the conditions by logical ORs and negate the result:

function checkOverlap(r1, r2) : Boolean
{ 
    return !(r1.x + r1.width < r2.x || r1.y + r1.height < r2.y || r1.x > r2.x + r2.width || r1.y > r2.y + r2.height);
}

To already receive a positive result when touching only, we can change the "<" and ">" by "<=" and ">=".

篱下浅笙歌 2024-07-16 08:47:46

这是用 C++ 检查两个矩形是否重叠的非常快速的方法:

return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
    && std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);

它的工作原理是计算相交矩形的左边框和右边框,然后比较它们:如果右边框等于或小于左边框,则意味着交集是空的,因此矩形不重叠; 否则,它会再次尝试使用顶部和底部边框。

与传统的 4 次比较相比,该方法有什么优势? 这是关于现代处理器的设计方式。 他们有一种叫做分支预测的东西,当比较结果始终相同时,它的效果很好,但否则会带来巨大的性能损失。 然而,在没有分支指令的情况下,CPU 的性能相当不错。 通过计算交叉点的边界,而不是对每个轴进行两次单独的检查,我们可以保存两个分支,每对一个。

如果第一次比较很可能是错误的,那么四次比较方法的性能可能会优于此方法。 不过,这种情况非常罕见,因为这意味着第二个矩形通常位于第一个矩形的左侧,而不是右侧或与之重叠; 大多数情况下,您需要检查第一个矩形两侧的矩形,这通常会抵消分支预测的优势。

这种方法还可以进一步改进,具体取决于矩形的预期分布:

  • 如果您希望检查的矩形主要位于彼此的左侧或右侧,那么上面的方法效果最好。 例如,当您使用矩形交集来检查游戏的碰撞时,游戏对象主要水平分布(例如,类似 SuperMarioBros 的游戏),情况可能就是这种情况。
  • 如果您希望检查的矩形主要位于彼此的顶部或底部,例如在冰塔类型的游戏中,那么首先检查顶部/底部,最后检查左/右可能会更快:
return std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom)
    && std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right);
  • 如果相交的概率很接近然而,对于不相交的概率,最好有一个完全无分支的替代方案:(
return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
     & std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);

请注意将 && 更改为单个 &

This is a very fast way to check with C++ if two rectangles overlap:

return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
    && std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);

It works by calculating the left and right borders of the intersecting rectangle, and then comparing them: if the right border is equal to or less than the left border, it means that the intersection is empty and therefore the rectangles do not overlap; otherwise, it tries again with the top and bottom borders.

What is the advantage of this method over the conventional alternative of 4 comparisons? It's about how modern processors are designed. They have something called branch prediction, which works well when the result of a comparison is always the same, but have a huge performance penalty otherwise. However, in the absence of branch instructions, the CPU performs quite well. By calculating the borders of the intersection instead of having two separate checks for each axis, we're saving two branches, one per pair.

It is possible that the four comparisons method outperforms this one, if the first comparison has a high chance of being false. That is very rare, though, because it means that the second rectangle is most often on the left side of the first rectangle, and not on the right side or overlapping it; and most often, you need to check rectangles on both sides of the first one, which normally voids the advantages of branch prediction.

This method can be improved even more, depending on the expected distribution of rectangles:

  • If you expect the checked rectangles to be predominantly to the left or right of each other, then the method above works best. This is probably the case, for example, when you're using the rectangle intersection to check collisions for a game, where the game objects are predominantly distributed horizontally (e.g. a SuperMarioBros-like game).
  • If you expect the checked rectangles to be predominantly to the top or bottom of each other, e.g. in an Icy Tower type of game, then checking top/bottom first and left/right last will probably be faster:
return std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom)
    && std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right);
  • If the probability of intersecting is close to the probability of not intersecting, however, it's better to have a completely branchless alternative:
return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
     & std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);

(Note the change of && to a single &)

零度℉ 2024-07-16 08:47:46

假设您已经定义了矩形的位置和大小,如下所示:

在此处输入图像描述

我的 C++ 实现如下:

class Vector2D
{
    public:
        Vector2D(int x, int y) : x(x), y(y) {}
        ~Vector2D(){}
        int x, y;
};

bool DoRectanglesOverlap(   const Vector2D & Pos1,
                            const Vector2D & Size1,
                            const Vector2D & Pos2,
                            const Vector2D & Size2)
{
    if ((Pos1.x < Pos2.x + Size2.x) &&
        (Pos1.y < Pos2.y + Size2.y) &&
        (Pos2.x < Pos1.x + Size1.x) &&
        (Pos2.y < Pos1.y + Size1.y))
    {
        return true;
    }
    return false;
}

根据上图给出的函数调用示例:

DoRectanglesOverlap(Vector2D(3, 7),
                    Vector2D(8, 5),
                    Vector2D(6, 4),
                    Vector2D(9, 4));

if 块内的比较如下所示:

if ((Pos1.x < Pos2.x + Size2.x) &&
    (Pos1.y < Pos2.y + Size2.y) &&
    (Pos2.x < Pos1.x + Size1.x) &&
    (Pos2.y < Pos1.y + Size1.y))
                 ↓  
if ((   3   <    6   +   9    ) &&
    (   7   <    4   +   4    ) &&
    (   6   <    3   +   8    ) &&
    (   4   <    7   +   5    ))

Suppose that you have defined the positions and sizes of the rectangles like this:

enter image description here

My C++ implementation is like this:

class Vector2D
{
    public:
        Vector2D(int x, int y) : x(x), y(y) {}
        ~Vector2D(){}
        int x, y;
};

bool DoRectanglesOverlap(   const Vector2D & Pos1,
                            const Vector2D & Size1,
                            const Vector2D & Pos2,
                            const Vector2D & Size2)
{
    if ((Pos1.x < Pos2.x + Size2.x) &&
        (Pos1.y < Pos2.y + Size2.y) &&
        (Pos2.x < Pos1.x + Size1.x) &&
        (Pos2.y < Pos1.y + Size1.y))
    {
        return true;
    }
    return false;
}

An example function call according to the given figure above:

DoRectanglesOverlap(Vector2D(3, 7),
                    Vector2D(8, 5),
                    Vector2D(6, 4),
                    Vector2D(9, 4));

The comparisons inside the if block will look like below:

if ((Pos1.x < Pos2.x + Size2.x) &&
    (Pos1.y < Pos2.y + Size2.y) &&
    (Pos2.x < Pos1.x + Size1.x) &&
    (Pos2.y < Pos1.y + Size1.y))
                 ↓  
if ((   3   <    6   +   9    ) &&
    (   7   <    4   +   4    ) &&
    (   6   <    3   +   8    ) &&
    (   4   <    7   +   5    ))
如果没结果 2024-07-16 08:47:46

问自己相反的问题:如何确定两个矩形是否根本不相交? 显然,完全位于矩形 B 左侧的矩形 A 不相交。 另外,如果 A 完全位于右侧。 同样,如果 A 完全高于 B 或完全低于 B。在任何其他情况下,A 和 B 相交。

下面的内容可能有错误,但我对算法很有信心:

struct Rectangle { int x; int y; int width; int height; };

bool is_left_of(Rectangle const & a, Rectangle const & b) {
   if (a.x + a.width <= b.x) return true;
   return false;
}
bool is_right_of(Rectangle const & a, Rectangle const & b) {
   return is_left_of(b, a);
}

bool not_intersect( Rectangle const & a, Rectangle const & b) {
   if (is_left_of(a, b)) return true;
   if (is_right_of(a, b)) return true;
   // Do the same for top/bottom...
 }

bool intersect(Rectangle const & a, Rectangle const & b) {
  return !not_intersect(a, b);
}

Ask yourself the opposite question: How can I determine if two rectangles do not intersect at all? Obviously, a rectangle A completely to the left of rectangle B does not intersect. Also if A is completely to the right. And similarly if A is completely above B or completely below B. In any other case A and B intersect.

What follows may have bugs, but I am pretty confident about the algorithm:

struct Rectangle { int x; int y; int width; int height; };

bool is_left_of(Rectangle const & a, Rectangle const & b) {
   if (a.x + a.width <= b.x) return true;
   return false;
}
bool is_right_of(Rectangle const & a, Rectangle const & b) {
   return is_left_of(b, a);
}

bool not_intersect( Rectangle const & a, Rectangle const & b) {
   if (is_left_of(a, b)) return true;
   if (is_right_of(a, b)) return true;
   // Do the same for top/bottom...
 }

bool intersect(Rectangle const & a, Rectangle const & b) {
  return !not_intersect(a, b);
}
§普罗旺斯的薰衣草 2024-07-16 08:47:46

在这个问题中,您链接到矩形何时处于任意旋转角度的数学。 然而,如果我理解问题中有关角度的一点,我会解释所有矩形都是相互垂直的。

一般了解重叠面积的公式是:

使用示例:

   1   2   3   4   5   6

1  +---+---+
   |       |   
2  +   A   +---+---+
   |       | B     |
3  +       +   +---+---+
   |       |   |   |   |
4  +---+---+---+---+   +
               |       |
5              +   C   +
               |       |
6              +---+---+

1)将所有 x 坐标(左侧和右侧)收集到一个列表中,然后对其进行排序并删除重复项

1 3 4 5 6

2)收集所有 y 坐标(顶部和底部)放入列表中,然后对其进行排序并删除重复项

1 2 3 4 6

3) 通过唯一 x 坐标之间的间隙数 * 唯一 y 坐标之间的间隙数创建一个 2D 数组。

4 * 4

4) 将所有矩形绘制到该网格中,增加其出现的每个单元格的计数:

   1   3   4   5   6

1  +---+
   | 1 | 0   0   0
2  +---+---+---+
   | 1 | 1 | 1 | 0
3  +---+---+---+---+
   | 1 | 1 | 2 | 1 |
4  +---+---+---+---+
     0   0 | 1 | 1 |
6          +---+---+

5) 当您绘制矩形时,很容易拦截重叠部分。

In the question, you link to the maths for when rectangles are at arbitrary angles of rotation. If I understand the bit about angles in the question however, I interpret that all rectangles are perpendicular to one another.

A general knowing the area of overlap formula is:

Using the example:

   1   2   3   4   5   6

1  +---+---+
   |       |   
2  +   A   +---+---+
   |       | B     |
3  +       +   +---+---+
   |       |   |   |   |
4  +---+---+---+---+   +
               |       |
5              +   C   +
               |       |
6              +---+---+

1) collect all the x coordinates (both left and right) into a list, then sort it and remove duplicates

1 3 4 5 6

2) collect all the y coordinates (both top and bottom) into a list, then sort it and remove duplicates

1 2 3 4 6

3) create a 2D array by number of gaps between the unique x coordinates * number of gaps between the unique y coordinates.

4 * 4

4) paint all the rectangles into this grid, incrementing the count of each cell it occurs over:

   1   3   4   5   6

1  +---+
   | 1 | 0   0   0
2  +---+---+---+
   | 1 | 1 | 1 | 0
3  +---+---+---+---+
   | 1 | 1 | 2 | 1 |
4  +---+---+---+---+
     0   0 | 1 | 1 |
6          +---+---+

5) As you paint the rectangles, its easy to intercept the overlaps.

下雨或天晴 2024-07-16 08:47:46

下面是它在 Java API 中的实现方式:

public boolean intersects(Rectangle r) {
    int tw = this.width;
    int th = this.height;
    int rw = r.width;
    int rh = r.height;
    if (rw <= 0 || rh <= 0 || tw <= 0 || th <= 0) {
        return false;
    }
    int tx = this.x;
    int ty = this.y;
    int rx = r.x;
    int ry = r.y;
    rw += rx;
    rh += ry;
    tw += tx;
    th += ty;
    //      overflow || intersect
    return ((rw < rx || rw > tx) &&
            (rh < ry || rh > ty) &&
            (tw < tx || tw > rx) &&
            (th < ty || th > ry));
}

Here's how it's done in the Java API:

public boolean intersects(Rectangle r) {
    int tw = this.width;
    int th = this.height;
    int rw = r.width;
    int rh = r.height;
    if (rw <= 0 || rh <= 0 || tw <= 0 || th <= 0) {
        return false;
    }
    int tx = this.x;
    int ty = this.y;
    int rx = r.x;
    int ry = r.y;
    rw += rx;
    rh += ry;
    tw += tx;
    th += ty;
    //      overflow || intersect
    return ((rw < rx || rw > tx) &&
            (rh < ry || rh > ty) &&
            (tw < tx || tw > rx) &&
            (th < ty || th > ry));
}
思念满溢 2024-07-16 08:47:46
struct Rect
{
   Rect(int x1, int x2, int y1, int y2)
   : x1(x1), x2(x2), y1(y1), y2(y2)
   {
       assert(x1 < x2);
       assert(y1 < y2);
   }

   int x1, x2, y1, y2;
};

//some area of the r1 overlaps r2
bool overlap(const Rect &r1, const Rect &r2)
{
    return r1.x1 < r2.x2 && r2.x1 < r1.x2 &&
           r1.y1 < r2.y2 && r2.x1 < r1.y2;
}

//either the rectangles overlap or the edges touch
bool touch(const Rect &r1, const Rect &r2)
{
    return r1.x1 <= r2.x2 && r2.x1 <= r1.x2 &&
           r1.y1 <= r2.y2 && r2.x1 <= r1.y2;
}
struct Rect
{
   Rect(int x1, int x2, int y1, int y2)
   : x1(x1), x2(x2), y1(y1), y2(y2)
   {
       assert(x1 < x2);
       assert(y1 < y2);
   }

   int x1, x2, y1, y2;
};

//some area of the r1 overlaps r2
bool overlap(const Rect &r1, const Rect &r2)
{
    return r1.x1 < r2.x2 && r2.x1 < r1.x2 &&
           r1.y1 < r2.y2 && r2.x1 < r1.y2;
}

//either the rectangles overlap or the edges touch
bool touch(const Rect &r1, const Rect &r2)
{
    return r1.x1 <= r2.x2 && r2.x1 <= r1.x2 &&
           r1.y1 <= r2.y2 && r2.x1 <= r1.y2;
}
旧时浪漫 2024-07-16 08:47:46

不要将坐标视为指示像素所在的位置。 将它们视为像素之间。 这样,2x2 矩形的面积应该是 4,而不是 9。

bool bOverlap = !((A.Left >= B.Right || B.Left >= A.Right)
               && (A.Bottom >= B.Top || B.Bottom >= A.Top));

Don't think of coordinates as indicating where pixels are. Think of them as being between the pixels. That way, the area of a 2x2 rectangle should be 4, not 9.

bool bOverlap = !((A.Left >= B.Right || B.Left >= A.Right)
               && (A.Bottom >= B.Top || B.Bottom >= A.Top));
寂寞美少年 2024-07-16 08:47:46

最简单的方法是

/**
 * Check if two rectangles collide
 * x_1, y_1, width_1, and height_1 define the boundaries of the first rectangle
 * x_2, y_2, width_2, and height_2 define the boundaries of the second rectangle
 */
boolean rectangle_collision(float x_1, float y_1, float width_1, float height_1, float x_2, float y_2, float width_2, float height_2)
{
  return !(x_1 > x_2+width_2 || x_1+width_1 < x_2 || y_1 > y_2+height_2 || y_1+height_1 < y_2);
}

首先让您记住,在计算机中,坐标系是颠倒的。 x 轴与数学中的相同,但 y 轴向下增加,向上减少。
如果矩形是从中心绘制的。
如果 x1 坐标大于 x2 加上其宽度的一半。 那么这意味着走一半他们就会互相碰触。 以同样的方式向下+其高度的一半。 会碰撞..

Easiest way is

/**
 * Check if two rectangles collide
 * x_1, y_1, width_1, and height_1 define the boundaries of the first rectangle
 * x_2, y_2, width_2, and height_2 define the boundaries of the second rectangle
 */
boolean rectangle_collision(float x_1, float y_1, float width_1, float height_1, float x_2, float y_2, float width_2, float height_2)
{
  return !(x_1 > x_2+width_2 || x_1+width_1 < x_2 || y_1 > y_2+height_2 || y_1+height_1 < y_2);
}

first of all put it in to your mind that in computers the coordinates system is upside down. x-axis is same as in mathematics but y-axis increases downwards and decrease on going upward..
if rectangle are drawn from center.
if x1 coordinates is greater than x2 plus its its half of widht. then it means going half they will touch each other. and in the same manner going downward + half of its height. it will collide..

天涯离梦残月幽梦 2024-07-16 08:47:46

对于那些使用中心点和一半大小作为矩形数据的人,而不是典型的 x,y,w,h 或 x0,y0,x1,x1,以下是您可以执行的操作方法:

#include <cmath> // for fabsf(float)

struct Rectangle
{
    float centerX, centerY, halfWidth, halfHeight;
};

bool isRectangleOverlapping(const Rectangle &a, const Rectangle &b)
{
    return (fabsf(a.centerX - b.centerX) <= (a.halfWidth + b.halfWidth)) &&
           (fabsf(a.centerY - b.centerY) <= (a.halfHeight + b.halfHeight)); 
}

For those of you who are using center points and half sizes for their rectangle data, instead of the typical x,y,w,h, or x0,y0,x1,x1, here's how you can do it:

#include <cmath> // for fabsf(float)

struct Rectangle
{
    float centerX, centerY, halfWidth, halfHeight;
};

bool isRectangleOverlapping(const Rectangle &a, const Rectangle &b)
{
    return (fabsf(a.centerX - b.centerX) <= (a.halfWidth + b.halfWidth)) &&
           (fabsf(a.centerY - b.centerY) <= (a.halfHeight + b.halfHeight)); 
}
甜尕妞 2024-07-16 08:47:46

假设这两个矩形是矩形A和矩形B。设它们的中心为A1和B1(A1和B1的坐标很容易找到),设高度为Ha和Hb,宽度为Wa和Wb,设dx为width(x) A1 和 B1 之间的距离,dy 是 A1 和 B1 之间的 height(y) 距离。

现在我们可以说 A 和 B 重叠:

if(!(dx > Wa+Wb)||!(dy > Ha+Hb)) returns true

Lets say the two rectangles are rectangle A and rectangle B. Let their centers be A1 and B1 (coordinates of A1 and B1 can be easily found out), let the heights be Ha and Hb, width be Wa and Wb, let dx be the width(x) distance between A1 and B1 and dy be the height(y) distance between A1 and B1.

Now we can say we can say A and B overlap: when

if(!(dx > Wa+Wb)||!(dy > Ha+Hb)) returns true
壹場煙雨 2024-07-16 08:47:46

如果矩形重叠,则重叠面积将大于零。 现在让我们找到重叠区域:

如果它们重叠,那么重叠矩形的左边缘将是 max(r1.x1, r2.x1) ,右边缘将是 min(r1 .x2,r2.x2)。 因此,重叠的长度将为 min(r1.x2, r2.x2) - max(r1.x1, r2.x1) ,

因此面积将为:

area = (max(r1.x1, r2.x1) - min(r1.x2, r2.x2)) * (max(r1.y1, r2.y1) - min(r1.y2, r2.y2))

如果 area = 0< /code> 那么它们就不会重叠。

很简单不是吗?

If the rectangles overlap then the overlap area will be greater than zero. Now let us find the overlap area:

If they overlap then the left edge of overlap-rect will be the max(r1.x1, r2.x1) and right edge will be min(r1.x2, r2.x2). So the length of the overlap will be min(r1.x2, r2.x2) - max(r1.x1, r2.x1)

So the area will be:

area = (max(r1.x1, r2.x1) - min(r1.x2, r2.x2)) * (max(r1.y1, r2.y1) - min(r1.y2, r2.y2))

If area = 0 then they don't overlap.

Simple isn't it?

吾性傲以野 2024-07-16 08:47:46

我已经实现了一个C#版本,它很容易转换为C++。

public bool Intersects ( Rectangle rect )
{
  float ulx = Math.Max ( x, rect.x );
  float uly = Math.Max ( y, rect.y );
  float lrx = Math.Min ( x + width, rect.x + rect.width );
  float lry = Math.Min ( y + height, rect.y + rect.height );

  return ulx <= lrx && uly <= lry;
}

I have implemented a C# version, it is easily converted to C++.

public bool Intersects ( Rectangle rect )
{
  float ulx = Math.Max ( x, rect.x );
  float uly = Math.Max ( y, rect.y );
  float lrx = Math.Min ( x + width, rect.x + rect.width );
  float lry = Math.Min ( y + height, rect.y + rect.height );

  return ulx <= lrx && uly <= lry;
}
人生戏 2024-07-16 08:47:46

我有一个非常简单的解决方案

让 x1,y1 x2,y2 ,l1,b1,l2,be 坐标和它们的长度和宽度分别

考虑条件 ((x2

现在,这些矩形重叠的唯一方法是,x1,y1 的对角线点将位于另一个矩形内,或者类似地,x2,y2 的点对角线将位于另一个矩形内。 这正是上述条件所暗示的。

I have a very easy solution

let x1,y1 x2,y2 ,l1,b1,l2,be cordinates and lengths and breadths of them respectively

consider the condition ((x2

now the only way these rectangle will overlap is if the point diagonal to x1,y1 will lie inside the other rectangle or similarly the point diagonal to x2,y2 will lie inside the other rectangle. which is exactly the above condition implies.

如此安好 2024-07-16 08:47:46

A和B是两个矩形。 C 是它们的覆盖矩形。

four points of A be (xAleft,yAtop),(xAleft,yAbottom),(xAright,yAtop),(xAright,yAbottom)
four points of A be (xBleft,yBtop),(xBleft,yBbottom),(xBright,yBtop),(xBright,yBbottom)

A.width = abs(xAleft-xAright);
A.height = abs(yAleft-yAright);
B.width = abs(xBleft-xBright);
B.height = abs(yBleft-yBright);

C.width = max(xAleft,xAright,xBleft,xBright)-min(xAleft,xAright,xBleft,xBright);
C.height = max(yAtop,yAbottom,yBtop,yBbottom)-min(yAtop,yAbottom,yBtop,yBbottom);

A and B does not overlap if
(C.width >= A.width + B.width )
OR
(C.height >= A.height + B.height) 

它会照顾所有可能的情况。

A and B be two rectangle. C be their covering rectangle.

four points of A be (xAleft,yAtop),(xAleft,yAbottom),(xAright,yAtop),(xAright,yAbottom)
four points of A be (xBleft,yBtop),(xBleft,yBbottom),(xBright,yBtop),(xBright,yBbottom)

A.width = abs(xAleft-xAright);
A.height = abs(yAleft-yAright);
B.width = abs(xBleft-xBright);
B.height = abs(yBleft-yBright);

C.width = max(xAleft,xAright,xBleft,xBright)-min(xAleft,xAright,xBleft,xBright);
C.height = max(yAtop,yAbottom,yBtop,yBbottom)-min(yAtop,yAbottom,yBtop,yBbottom);

A and B does not overlap if
(C.width >= A.width + B.width )
OR
(C.height >= A.height + B.height) 

It takes care all possible cases.

孤云独去闲 2024-07-16 08:47:46

这是来自《Java 编程入门 - 综合版》一书的练习 3.28。 该代码测试两个矩形是否有齿,一个是否在另一个内部以及一个是否在另一个外部。 如果这些条件都不满足,则两者重叠。

**3.28(几何:两个矩形)编写一个程序,提示用户输入
两个矩形的中心 x、y 坐标、宽度和高度,并确定
第二个矩形是否在第一个矩形内部或与第一个矩形重叠,如图所示
如图 3.9 所示。 测试您的程序以涵盖所有情况。
以下是运行示例:

输入 r1 的中心 x、y 坐标、宽度和高度:2.5 4 2.5 43
输入 r2 的中心 x、y 坐标、宽度和高度:1.5 5 0.5 3
r2 在 r1 内部

输入 r1 中心的 x、y 坐标、宽度和高度:1 2 3 5.5
输入 r2 的中心 x、y 坐标、宽度和高度:3 4 4.5 5
r2 与 r1 重叠

输入 r1 中心的 x、y 坐标、宽度和高度:1 2 3 3
输入 r2 的中心 x、y 坐标、宽度和高度:40 45 3 2
r2 不与 r1 重叠

import java.util.Scanner;

public class ProgrammingEx3_28 {
public static void main(String[] args) {
    Scanner input = new Scanner(System.in);

    System.out
            .print("Enter r1's center x-, y-coordinates, width, and height:");
    double x1 = input.nextDouble();
    double y1 = input.nextDouble();
    double w1 = input.nextDouble();
    double h1 = input.nextDouble();
    w1 = w1 / 2;
    h1 = h1 / 2;
    System.out
            .print("Enter r2's center x-, y-coordinates, width, and height:");
    double x2 = input.nextDouble();
    double y2 = input.nextDouble();
    double w2 = input.nextDouble();
    double h2 = input.nextDouble();
    w2 = w2 / 2;
    h2 = h2 / 2;

    // Calculating range of r1 and r2
    double x1max = x1 + w1;
    double y1max = y1 + h1;
    double x1min = x1 - w1;
    double y1min = y1 - h1;
    double x2max = x2 + w2;
    double y2max = y2 + h2;
    double x2min = x2 - w2;
    double y2min = y2 - h2;

    if (x1max == x2max && x1min == x2min && y1max == y2max
            && y1min == y2min) {
        // Check if the two are identicle
        System.out.print("r1 and r2 are indentical");

    } else if (x1max <= x2max && x1min >= x2min && y1max <= y2max
            && y1min >= y2min) {
        // Check if r1 is in r2
        System.out.print("r1 is inside r2");
    } else if (x2max <= x1max && x2min >= x1min && y2max <= y1max
            && y2min >= y1min) {
        // Check if r2 is in r1
        System.out.print("r2 is inside r1");
    } else if (x1max < x2min || x1min > x2max || y1max < y2min
            || y2min > y1max) {
        // Check if the two overlap
        System.out.print("r2 does not overlaps r1");
    } else {
        System.out.print("r2 overlaps r1");
    }

}
}

This is from exercise 3.28 from the book Introduction to Java Programming- Comprehensive Edition. The code tests whether the two rectangles are indenticle, whether one is inside the other and whether one is outside the other. If none of these condition are met then the two overlap.

**3.28 (Geometry: two rectangles) Write a program that prompts the user to enter the
center x-, y-coordinates, width, and height of two rectangles and determines
whether the second rectangle is inside the first or overlaps with the first, as shown
in Figure 3.9. Test your program to cover all cases.
Here are the sample runs:

Enter r1's center x-, y-coordinates, width, and height: 2.5 4 2.5 43
Enter r2's center x-, y-coordinates, width, and height: 1.5 5 0.5 3
r2 is inside r1

Enter r1's center x-, y-coordinates, width, and height: 1 2 3 5.5
Enter r2's center x-, y-coordinates, width, and height: 3 4 4.5 5
r2 overlaps r1

Enter r1's center x-, y-coordinates, width, and height: 1 2 3 3
Enter r2's center x-, y-coordinates, width, and height: 40 45 3 2
r2 does not overlap r1

import java.util.Scanner;

public class ProgrammingEx3_28 {
public static void main(String[] args) {
    Scanner input = new Scanner(System.in);

    System.out
            .print("Enter r1's center x-, y-coordinates, width, and height:");
    double x1 = input.nextDouble();
    double y1 = input.nextDouble();
    double w1 = input.nextDouble();
    double h1 = input.nextDouble();
    w1 = w1 / 2;
    h1 = h1 / 2;
    System.out
            .print("Enter r2's center x-, y-coordinates, width, and height:");
    double x2 = input.nextDouble();
    double y2 = input.nextDouble();
    double w2 = input.nextDouble();
    double h2 = input.nextDouble();
    w2 = w2 / 2;
    h2 = h2 / 2;

    // Calculating range of r1 and r2
    double x1max = x1 + w1;
    double y1max = y1 + h1;
    double x1min = x1 - w1;
    double y1min = y1 - h1;
    double x2max = x2 + w2;
    double y2max = y2 + h2;
    double x2min = x2 - w2;
    double y2min = y2 - h2;

    if (x1max == x2max && x1min == x2min && y1max == y2max
            && y1min == y2min) {
        // Check if the two are identicle
        System.out.print("r1 and r2 are indentical");

    } else if (x1max <= x2max && x1min >= x2min && y1max <= y2max
            && y1min >= y2min) {
        // Check if r1 is in r2
        System.out.print("r1 is inside r2");
    } else if (x2max <= x1max && x2min >= x1min && y2max <= y1max
            && y2min >= y1min) {
        // Check if r2 is in r1
        System.out.print("r2 is inside r1");
    } else if (x1max < x2min || x1min > x2max || y1max < y2min
            || y2min > y1max) {
        // Check if the two overlap
        System.out.print("r2 does not overlaps r1");
    } else {
        System.out.print("r2 overlaps r1");
    }

}
}
已下线请稍等 2024-07-16 08:47:46
bool Square::IsOverlappig(Square &other)
{
    bool result1 = other.x >= x && other.y >= y && other.x <= (x + width) && other.y <= (y + height); // other's top left falls within this area
    bool result2 = other.x >= x && other.y <= y && other.x <= (x + width) && (other.y + other.height) <= (y + height); // other's bottom left falls within this area
    bool result3 = other.x <= x && other.y >= y && (other.x + other.width) <= (x + width) && other.y <= (y + height); // other's top right falls within this area
    bool result4 = other.x <= x && other.y <= y && (other.x + other.width) >= x && (other.y + other.height) >= y; // other's bottom right falls within this area
    return result1 | result2 | result3 | result4;
}
bool Square::IsOverlappig(Square &other)
{
    bool result1 = other.x >= x && other.y >= y && other.x <= (x + width) && other.y <= (y + height); // other's top left falls within this area
    bool result2 = other.x >= x && other.y <= y && other.x <= (x + width) && (other.y + other.height) <= (y + height); // other's bottom left falls within this area
    bool result3 = other.x <= x && other.y >= y && (other.x + other.width) <= (x + width) && other.y <= (y + height); // other's top right falls within this area
    bool result4 = other.x <= x && other.y <= y && (other.x + other.width) >= x && (other.y + other.height) >= y; // other's bottom right falls within this area
    return result1 | result2 | result3 | result4;
}
嘴硬脾气大 2024-07-16 08:47:46
struct point { int x, y; };

struct rect { point tl, br; }; // top left and bottom right points

// return true if rectangles overlap
bool overlap(const rect &a, const rect &b)
{
    return a.tl.x <= b.br.x && a.br.x >= b.tl.x && 
           a.tl.y >= b.br.y && a.br.y <= b.tl.y;
}
struct point { int x, y; };

struct rect { point tl, br; }; // top left and bottom right points

// return true if rectangles overlap
bool overlap(const rect &a, const rect &b)
{
    return a.tl.x <= b.br.x && a.br.x >= b.tl.x && 
           a.tl.y >= b.br.y && a.br.y <= b.tl.y;
}
陈独秀 2024-07-16 08:47:45
if (RectA.Left < RectB.Right && RectA.Right > RectB.Left &&
     RectA.Top > RectB.Bottom && RectA.Bottom < RectB.Top ) 

或者,使用笛卡尔坐标

(X1为左坐标,X2为右坐标,从左到右递增,Y1为上坐标,Y2为下坐标,从下到上递增< /strong> -- 如果这不是您的坐标系 [例如,大多数计算机的 Y 方向相反],交换下面的比较)...

if (RectA.X1 < RectB.X2 && RectA.X2 > RectB.X1 &&
    RectA.Y1 > RectB.Y2 && RectA.Y2 < RectB.Y1) 

假设您有矩形 A 和矩形 B。
证明是通过反证法。 四个条件中的任何一个都保证不存在重叠

  • Cond1。 如果 A 的左边缘位于 B 右边缘的右侧,
    - 那么 A 完全位于 B
  • Cond2 的右侧。 如果 A 的右边缘位于 B 左边缘的左侧,
    - 那么 A 完全位于 B
  • Cond3 的左侧。 如果 A 的上边缘低于 B 的下边缘,
    - 那么 A 完全低于 B
  • Cond4。 如果 A 的底边高于 B 的顶边,
    - 那么 A 完全高于 B

因此,非重叠的条件是

NON-Overlap => Cond1 Or Cond2 Or Cond3 Or Cond4

因此,重叠的充分条件是相反的。

Overlap => NOT (Cond1 Or Cond2 Or Cond3 Or Cond4)

德摩根定律说
Not (A or B or C or D)Not A And Not B And Not C And Not D
相同
所以使用 De Morgan,我们有

Not Cond1 And Not Cond2 And Not Cond3 And Not Cond4

这相当于:

  • A 的左边缘到 B 右边缘的左侧,[RectA.Left < RectB.Right],并且
  • A 的右边缘到 B 左边缘的右侧,[RectA.Right > RectB.Left],并且
  • A 的顶部位于 B 的底部上方,[RectA.Top > RectB.Bottom],并且
  • A 的底部位于 B 的顶部下方 [RectA.Bottom < RectB.Top]

注释 1:很明显,同样的原理可以扩展到任意数量的维度。
注 2:仅对一个像素的重叠进行计数也应该相当明显,请更改该像素上的 < 和/或 > <=>= 的边界。
注3:当使用笛卡尔坐标(X,Y)时,这个答案是基于标准代数笛卡尔坐标(x从左到右增加,Y从下到上增加)。 显然,如果计算机系统可能以不同的方式机械化屏幕坐标(例如,从上到下增加 Y,或从右到左增加 X),则需要相应地调整语法/

if (RectA.Left < RectB.Right && RectA.Right > RectB.Left &&
     RectA.Top > RectB.Bottom && RectA.Bottom < RectB.Top ) 

or, using Cartesian coordinates

(With X1 being left coord, X2 being right coord, increasing from left to right and Y1 being Top coord, and Y2 being Bottom coord, increasing from bottom to top -- if this is not how your coordinate system [e.g. most computers have the Y direction reversed], swap the comparisons below) ...

if (RectA.X1 < RectB.X2 && RectA.X2 > RectB.X1 &&
    RectA.Y1 > RectB.Y2 && RectA.Y2 < RectB.Y1) 

Say you have Rect A, and Rect B.
Proof is by contradiction. Any one of four conditions guarantees that no overlap can exist:

  • Cond1. If A's left edge is to the right of the B's right edge,
    - then A is Totally to right Of B
  • Cond2. If A's right edge is to the left of the B's left edge,
    - then A is Totally to left Of B
  • Cond3. If A's top edge is below B's bottom edge,
    - then A is Totally below B
  • Cond4. If A's bottom edge is above B's top edge,
    - then A is Totally above B

So condition for Non-Overlap is

NON-Overlap => Cond1 Or Cond2 Or Cond3 Or Cond4

Therefore, a sufficient condition for Overlap is the opposite.

Overlap => NOT (Cond1 Or Cond2 Or Cond3 Or Cond4)

De Morgan's law says
Not (A or B or C or D) is the same as Not A And Not B And Not C And Not D
so using De Morgan, we have

Not Cond1 And Not Cond2 And Not Cond3 And Not Cond4

This is equivalent to:

  • A's Left Edge to left of B's right edge, [RectA.Left < RectB.Right], and
  • A's right edge to right of B's left edge, [RectA.Right > RectB.Left], and
  • A's top above B's bottom, [RectA.Top > RectB.Bottom], and
  • A's bottom below B's Top [RectA.Bottom < RectB.Top]

Note 1: It is fairly obvious this same principle can be extended to any number of dimensions.
Note 2: It should also be fairly obvious to count overlaps of just one pixel, change the < and/or the > on that boundary to a <= or a >=.
Note 3: This answer, when utilizing Cartesian coordinates (X, Y) is based on standard algebraic Cartesian coordinates (x increases left to right, and Y increases bottom to top). Obviously, where a computer system might mechanize screen coordinates differently, (e.g., increasing Y from top to bottom, or X From right to left), the syntax will need to be adjusted accordingly/

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文