XKCD 中的 Wolfram 规则 34

发布于 2024-07-09 07:12:07 字数 1477 浏览 18 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(8

暮年 2024-07-16 07:12:08

xkcd 漫画的第 9-13 和 19-20 帧中,您可以看到由规则。 我们想知道的是“我将 Wolfram 的第 34 条规则称为第 34 条规则”有什么好笑的?

我不太确定规则 34 的意义是什么(除了 xkcd 305 上的互联网色情笑话 [归功于 Jason Slocomb 的评论]),但漫画的要点是,一些可怜的家伙正在使用 < 来模拟我们的整个宇宙。 a href="http://en.wikipedia.org/wiki/Turing_machine" rel="noreferrer">图灵机。 图灵机的思想本质上是数据表可用于对其他数据运行计算(即程序是第一个表,输入和输出是另一个表)。

第一个表(程序)给出了告诉机器如何处理数据的规则。 沃尔夫勒姆声称已将一切归结为尽可能少的规则,以便能够执行所有可能的计算(通用计算机)。

他说它需要 2 种状态和 3 种颜色或其他东西(我可能把顺序颠倒了)。 我认为状态指的是 ( 0 / 1 ),颜色指的是您执行的操作类型。 如果您研究过一些汇编,这会更有意义。

最基本的计算是比较 2 位数据以产生三分之一。 这些称为布尔运算。 有 8 种可能:

0;0 -> 0
0;0 -> 1
0;1 -> 0
0;1 -> 1
1;0 -> 0
1;0 -> 1
1;1 -> 0
1;1 -> 1

您可以通过单一“颜色”比较(例如 XOR 电路)来完成所有这些操作,甚至可以将此操作与写入操作合并。 然后,通过在某处保留 2 个控制位(o 和 1 在内存的开头),您可以通过将这些位相互比较或相互比较来完成写入普通 0 或 1。 如果您以不同的模式将一堆 XOR 电路连接在一起,您就可以实现所有 8 个结果。 Wiki XOR 了解更多相关内容。

但大多数程序都需要另一个非常重要的功能:您必须跳转到程序的不同部分,然后再跳回来。 所以跳跃是完全不同的颜色。

当然,您必须从内存中读取位。

因此,总而言之,沃尔夫勒姆说他可以用 3 种“颜色”制作任何程序(这意味着所有可以想象的程序)。

Stephen Wolfram 对这些图灵模式进行了广泛的经验研究; 盯着它们,沉思它们,对它们进行分类,并通过研究数百张图片和图表来比较它们的含义等等。

所以我想,这个笑话的妙语要么就是,当那个搬石头的可怜人开始处理沃尔夫勒姆的研究工作的宇宙模拟部分以及所有涉及的大脑活动等时,岩石模式就会变得真正递归,或者它与涉及 Wolfram 元胞自动机规则的互联网色情摇滚模拟有关??!!?

递归模式的摇滚互联网色情模拟?
带有摇滚模拟的网络色情内容?

我想是这样的。

In frames 9-13 and 19-20 in the xkcd comic, you can see some patterns generated by the rules. The thing we want to know is what's funny about "I call rule 34 on Wolfram's rule 34"?

I'm not totally sure what the significance of rule 34 is (except the Internet porn joke on xkcd 305 [credit to Jason Slocomb's comment]), but the point of the comic was that some poor dude is simulating our entire universe using a Turing machine. The idea of a Turing machine is essentially that a table of data can be used to run computations on other data (i.e. a program is the first table and the input and output are the other table).

The first table (the program) gives rules that tell the machine what to do with the data. Wolfram claimed to have boiled down everything to the smallest number of rules possible to be able to carry out all possible computations (a universal computer).

He said it needs 2 states and 3 colors or something (I might have the order backward). I think the states refers to ( 0 / 1 ) and the colors refer to the kind of operations you perform. If you studied some assembly this will make more sense.

The most elementary computation is when 2 bits of data get compared to yield a third. These are called boolean operations. There are 8 possible:

0;0 -> 0
0;0 -> 1
0;1 -> 0
0;1 -> 1
1;0 -> 0
1;0 -> 1
1;1 -> 0
1;1 -> 1

You can do all of this with a single "color" of comparing (like an XOR circuit for example) and even merge this operation with the write operation. Then by keeping 2 control bits somewhere (o and 1 at the beginning of your memory) you can accomplish writing a plain 0 or 1 by comparing those bits to themselves or each other. If you link a bunch of XOR circuits together in different patterns you can achieve all 8 outcomes. Wiki XOR for more on that.

But most programs require another very important feature: you have to jump to different parts of the program and then jump back. so jumping is an entirely different color.

And of course you have to read bits from memory.

So all in all Wolfram said he could make any program (that means all conceivable programs exhaustivally) out of just 3 "colors".

Stephen Wolfram has done extensive empiric research on these Turing patterns; staring at them, meditating on them, cataloging them, and comparing them by studying hundreds of pictures and graphs of their implications and so on.

So the punchline of the joke, I presume, is either just that when the poor guy moving rocks gets to the part of his universe simulation dealing with the research work of Wolfram, and all the brain activity involved etc, the rock patterns get really recursive, or it has something to do with rock simulations of Internet porn involving Wolfram's cellular automaton rules??!!?

Recursively patterned rock-Internet porn simulations?
Internet pornography with rock-simulations?

Something like that I suppose.

可爱暴击 2024-07-16 07:12:08

It took me a moment to get this, but the joke is a pun on two different Rule 34's. The first is xkcd's Rule 34 ("If you can imagine it, there is porn of it") coined in this comic. The second is Wolfram's Rule 34 explained expertly above. So the cartoonist is saying that there must, somewhere, be cellular automata-themed porn. It doesn't have much to do with this specific comic other than the narrator's use of a cellular automaton.

倾城°AllureLove 2024-07-16 07:12:08

规则 34 是指 Stephen Wolfram 为元胞自动机开发的一组规则。 您可能熟悉Conway 的生命游戏,它可用于建模计算。 Wolfram 有一种类似的使用元胞自动机的计算方法,由许多规则定义; 规则 34 只是定义计算如何进行的一条规则。 “游戏”本身在 Wolfram 的简单程序图集中定义。

如果您想了解更多信息,包括一些有用的链接,您应该查看这篇博文,如下所示以及这个< /a>. 遗憾的是,自从 XKCD 漫画问世以来,很多人在 Google 中搜索了这条规则,导致大量垃圾邮件发送者试图利用该搜索词,因此很难找到有关 Wolfram 规则 34 的直接信息。

Rule 34 refers to a set of rules developed by Stephen Wolfram for cellular automata. You may be familiar with Conway's Game of Life, which can be used to model computations. Wolfram has a similar method of computation using cellular automata, defined by a number of rules; Rule 34 is but one rule for defining how the computation takes place. The "game" itself is defined in Wolfram's Atlas of Simple Programs.

If you want more information, including some helpful links, you should check out this blog post, as well as this one. Sadly, since the XKCD cartoon came out, a lot of people have searched on this rule in Google, resulting in a lot of spammers who are trying to take advantage of the search term, so direct information on Wolfram's Rule 34 is difficult to find.

浅笑依然 2024-07-16 07:12:08

规则 34 是 256 个基本元胞自动机(一维)之一。

Rule 34 is one of the 256 elementary cellular automata (in 1-dimension).

删除会话 2024-07-16 07:12:08

然而,漫画中岩石图案所表明的规则是规则 126。

The rule indicated by the pattern of the rocks in the comic, however, is rule 126.

路弥 2024-07-16 07:12:07

Wolfram 以这种方式根据最近邻组织了 256 个可能的一维元胞自动机:

RULES:
0:        0        0        0
1:        0        0        1
2:        0        1        0
3:        0        1        1
4:        1        0        0
5:        1        0        1
6:        1        1        0
7:        1        1        1

如果您正在评估遵循规则 2 的元胞自动机 (CA) 中的一个阶段,那么每当一个三位字符串与规则 2 的配置匹配时,中心位在下一次迭代时变为(或在本例中保持)为真。

CA 的规则被描述为位串。 假设这是规则 110(我最喜欢的)。 在二进制中,110 是 01101110。最低有效位为零。 这意味着如果该单元格及其邻居匹配上面的规则 0,它就会变成白色/负数/0/假/其他。 第二个最低有效数字是 1,因此如果该单元格及其邻居与上面的规则 1 匹配,它将变为黑色/正数/1/true/whatever`,等等,直到您看到,对于规则 110,如果一个单元格和它的邻居匹配规则1、2、3、5、6,则该单元格变黑。 否则,它会变白。 不久前,我写了一些 JS 代码,让我可以使用这些独特的 CA:

http://lucasoman.com/files/projects/caeditor/caed.php

正如您通过使用它所看到的,您可以随机切换任何块,这会改变每个块
根据规则阻止其下方。 这是观察连锁反应的好方法
过程中的偏差造成的。

Wolfram has organized the 256 possible 1-D cellular automata based on nearest neighbors in this way:

RULES:
0:        0        0        0
1:        0        0        1
2:        0        1        0
3:        0        1        1
4:        1        0        0
5:        1        0        1
6:        1        1        0
7:        1        1        1

If you're evaluating a stage in a cellular automaton (CA) that follows rule 2, then whenever a three-bit string matches rule 2's configuration, the center bit becomes (or stays, in this case) true on the next iteration.

A CA's rules are described as a bitstring. Say it's rule 110 (my favorite). In binary, 110 is 01101110. The digit of least significance is zero. This means that if the cell and its neighbors match rule 0 above, it turns white/negative/0/false/whatever. The second least significant digit is one, so if the cell and its neighbors match rule 1 above, it turns black/positive/1/true/whatever`, etc. etc. until you see that, for rule 110, if a cell and its neighbors match rules 1,2,3,5,6, then the cell turns black. Otherwise, it turns white. A while back, I wrote some JS code to allow me to play around with these unique CA:

http://lucasoman.com/files/projects/caeditor/caed.php

As you can see by playing with it, you can randomly toggle any block, which alters every
block below it according to the rules. It's kind of a neat way to see the chain reaction
caused by aberrations in the process.

掩饰不了的爱 2024-07-16 07:12:07

多么完美的自我实现模因啊。 XKCD 足够流行,人们会搜索一些被引用的晦涩难懂的东西。 上面发布了一条注释,指出垃圾邮件发送者正在标头中使用 W's-34 来重定向搜索。 由于垃圾邮件发送者有时会为色情网站工作,因此作者仅通过调用 34 就创建了与 w-34 相关的色情内容。 神圣的递归蝙蝠侠。

What a perfect self fulfilling meme. XKCD is popular enough that people will search for something obscure that is referenced. Above is posted a note that spammers are using W's-34 in headers to redirect searches. As, spammers sometimes work for porn sites, the author created w-34 related porn by merely calling 34 on it. Holy recursion batman.

一梦浮鱼 2024-07-16 07:12:07

“我将 Wolfram 的规则 34 称为规则 34”

第一个“规则 34”指的是 http: 中提到的互联网规则 34: //xkcd.com/305/ 第二个“规则 34”是 Wolfram 的元胞自动机 理论。

"I call rule 34 on Wolfram's Rule 34"

The first "rule 34" refers to the rule 34 of the Internet mentioned in http://xkcd.com/305/ the second "rule 34" is Wolfram's cellular automata theory.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文