你知道这个Scheme函数怎么写吗?

发布于 2024-07-08 10:16:41 字数 1453 浏览 11 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

风渺 2024-07-15 10:16:41

我相信这是数论中一个尚未解决的重大问题。 有一个假设,每个数字经过此操作足够多的次数后都会减少到一。

然而,我真的不认为计划是解决这个问题的正确工具,而且由于很多人已经决定这是家庭作业而不是一个合法的问题,我将在 c 中提供我的解决方案,

inline unsigned int step(unsigned int i)
{
    return (i&0x1)*(i*3+1)+((i+1)&0x1)*(i>>1);
}

这将在数字上迈出一步(没有分支!!!)。 整个计算的方法如下:

unsigned int collatz(unsigned int i)
{
    unsigned int cur = i;
    unsigned steps = 0;
    while((cur=step(cur))!=1) steps++;
    return steps;
}

我认为不可能完全删除分支。 这是数论问题,因此它适合极端(并且可能不必要)优化。 享受

i believe this is a great unsolved question of number theory. There is a hypothesis that every number when it goes through this operation enough times will reduce to one.

However i don't really think scheme is the right tool for this, plus since a lot of people have decided that this is homework and not a legit question I will provide my solution in c

inline unsigned int step(unsigned int i)
{
    return (i&0x1)*(i*3+1)+((i+1)&0x1)*(i>>1);
}

this will do one step on the number (with no branches!!!). Heres how you do the whole calculation:

unsigned int collatz(unsigned int i)
{
    unsigned int cur = i;
    unsigned steps = 0;
    while((cur=step(cur))!=1) steps++;
    return steps;
}

I don't think its possible to remove the branch entirely. this is number theory problem and thus it is suited to extreme (and possibly unnecessary) optimization. enjoy

我很OK 2024-07-15 10:16:41

对于其他两个函数,使用foldl:

(define (listfrom a b)
  (if (= a b)
      (cons a empty)
      (cons a (listfrom (+ 1 a) b))))

(define (max-collatz a b)
  (foldl max 0 (map collatz-loop (listfrom a b))))

(define (max-collatz-num a b)
  (foldl (lambda (c r)
           (if (> (collatz-loop c) (collatz-loop r)) c r))
         a
         (listfrom a b)))    

For the other two functions, using foldl:

(define (listfrom a b)
  (if (= a b)
      (cons a empty)
      (cons a (listfrom (+ 1 a) b))))

(define (max-collatz a b)
  (foldl max 0 (map collatz-loop (listfrom a b))))

(define (max-collatz-num a b)
  (foldl (lambda (c r)
           (if (> (collatz-loop c) (collatz-loop r)) c r))
         a
         (listfrom a b)))    
娇纵 2024-07-15 10:16:41

执行一次迭代的函数:

(define (collatz x)
  (if (even? x)
      (/ x 2)
      (+ (* x 3) 1)))

该函数接受一个输入并循环直到达到 1。该函数返回达到该状态所需的迭代次数(尝试绘制此图 - 它看起来很酷):

(define (collatz-loop x)
  (if (= x 1) 1
      (+ (collatz-loop (collatz x)) 1)))

根据要求,这里有一个尾部 - collat​​z-loop 的递归版本:

(define (collatz-loop x)
  (define (internal x counter)
    (if (= x 1) counter
    (internal (collatz x) (+ counter 1))))
  (internal x 1))

该函数采用一个范围并返回需要最多步数到达末尾的数字以及步数:

(define (collatz-range a b)
  (if (= a b)
      (cons a (collatz-loop a))
      (let ((this (collatz-loop a))
        (rest (collatz-range (+ a 1) b)))
        (if (< this (cdr rest)) rest
            (cons a this)))))

(collatz-range 1 20) ; returns (18 . 21), which means that (collatz-loop 18) returns 21

这是 collat​​z-range,尾递归:

(define (collatz-range a b)
  (define (internal a best)
    (if (< b a) best
        (internal (+ a 1)
        (let ((x (collatz-loop a)))
          (if (< x (cdr best))
              best
              (cons a x))))))
  (internal a (cons -1 -1)))

A function that performs one iteration:

(define (collatz x)
  (if (even? x)
      (/ x 2)
      (+ (* x 3) 1)))

This function takes an input and loops until it reaches 1. The function returns the number of iterations required to get to that state (try graphing this - it looks pretty cool):

(define (collatz-loop x)
  (if (= x 1) 1
      (+ (collatz-loop (collatz x)) 1)))

As requested, here's a tail-recursive version of collatz-loop:

(define (collatz-loop x)
  (define (internal x counter)
    (if (= x 1) counter
    (internal (collatz x) (+ counter 1))))
  (internal x 1))

This function takes a range and returns the number that takes the most number of steps to reach the end along with the number of steps:

(define (collatz-range a b)
  (if (= a b)
      (cons a (collatz-loop a))
      (let ((this (collatz-loop a))
        (rest (collatz-range (+ a 1) b)))
        (if (< this (cdr rest)) rest
            (cons a this)))))

(collatz-range 1 20) ; returns (18 . 21), which means that (collatz-loop 18) returns 21

This is collatz-range, tail recursive:

(define (collatz-range a b)
  (define (internal a best)
    (if (< b a) best
        (internal (+ a 1)
        (let ((x (collatz-loop a)))
          (if (< x (cdr best))
              best
              (cons a x))))))
  (internal a (cons -1 -1)))
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文