如何检查模板类是否具有成员函数?

发布于 2024-07-07 22:26:56 字数 398 浏览 13 评论 0原文

是否可以编写一个模板,根据类上是否定义了某个成员函数来改变行为?

这是我想要编写的一个简单示例:

template<class T>
std::string optionalToString(T* obj)
{
    if (FUNCTION_EXISTS(T->toString))
        return obj->toString();
    else
        return "toString not defined";
}

因此,如果 class T 定义了 toString(),则它会使用它; 否则,它不会。 我不知道该怎么做的神奇部分是“FUNCTION_EXISTS”部分。

Is it possible to write a template that changes behavior depending on if a certain member function is defined on a class?

Here's a simple example of what I would want to write:

template<class T>
std::string optionalToString(T* obj)
{
    if (FUNCTION_EXISTS(T->toString))
        return obj->toString();
    else
        return "toString not defined";
}

So, if class T has toString() defined, then it uses it; otherwise, it doesn't. The magical part that I don't know how to do is the "FUNCTION_EXISTS" part.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(30

拥有 2024-07-14 22:26:57

是的,使用 SFINAE,您可以检查给定的类是否提供了某种方法。 这是工作代码:

#include <iostream>

struct Hello
{
    int helloworld() { return 0; }
};

struct Generic {};    

// SFINAE test
template <typename T>
class has_helloworld
{
    typedef char one;
    struct two { char x[2]; };

    template <typename C> static one test( decltype(&C::helloworld) ) ;
    template <typename C> static two test(...);    

public:
    enum { value = sizeof(test<T>(0)) == sizeof(char) };
};
    
int main(int argc, char *argv[])
{
    std::cout << has_helloworld<Hello>::value << std::endl;
    std::cout << has_helloworld<Generic>::value << std::endl;
    return 0;
}

我刚刚使用 Linux 和 gcc 4.1/4.3 对其进行了测试。 我不知道它是否可以移植到运行不同编译器的其他平台。

Yes, with SFINAE you can check if a given class does provide a certain method. Here's the working code:

#include <iostream>

struct Hello
{
    int helloworld() { return 0; }
};

struct Generic {};    

// SFINAE test
template <typename T>
class has_helloworld
{
    typedef char one;
    struct two { char x[2]; };

    template <typename C> static one test( decltype(&C::helloworld) ) ;
    template <typename C> static two test(...);    

public:
    enum { value = sizeof(test<T>(0)) == sizeof(char) };
};
    
int main(int argc, char *argv[])
{
    std::cout << has_helloworld<Hello>::value << std::endl;
    std::cout << has_helloworld<Generic>::value << std::endl;
    return 0;
}

I've just tested it with Linux and gcc 4.1/4.3. I don't know if it's portable to other platforms running different compilers.

落在眉间の轻吻 2024-07-14 22:26:57

这个问题很老了,但在 C++11 中,我们有了一种新方法来检查函数是否存在(或者是否存在任何非类型成员,真的),再次依赖 SFINAE:

template<class T>
auto serialize_imp(std::ostream& os, T const& obj, int)
    -> decltype(os << obj, void())
{
  os << obj;
}

template<class T>
auto serialize_imp(std::ostream& os, T const& obj, long)
    -> decltype(obj.stream(os), void())
{
  obj.stream(os);
}

template<class T>
auto serialize(std::ostream& os, T const& obj)
    -> decltype(serialize_imp(os, obj, 0), void())
{
  serialize_imp(os, obj, 0);
}

现在进行一些解释。 首先,我使用 表达式 SFINAE如果 decltype 内的第一个表达式无效(即该函数不存在),则从重载解析中排除 serialize(_imp) 函数。

void() 用于使所有这些函数的返回类型为 void

0 参数用于优先选择 os << obj 重载(如果两者都可用)(文字 0 的类型为 int,因此第一个重载是更好的匹配)。


现在,您可能需要一个特征来检查函数是否存在。 幸运的是,写起来很容易。 但请注意,您需要为您可能想要的每个不同的函数名称编写一个特征您自己

#include <type_traits>

template<class>
struct sfinae_true : std::true_type{};

namespace detail{
  template<class T, class A0>
  static auto test_stream(int)
      -> sfinae_true<decltype(std::declval<T>().stream(std::declval<A0>()))>;
  template<class, class A0>
  static auto test_stream(long) -> std::false_type;
} // detail::

template<class T, class Arg>
struct has_stream : decltype(detail::test_stream<T, Arg>(0)){};

实例。

然后进行解释。 首先, sfinae_true 是一个辅助类型,它基本上与编写 decltype(void(std::declval().stream(a0)), std:: true_type{})。 优点很简单,就是更短。
接下来,struct has_stream : decltype(...) 最后继承自 std::true_typestd::false_type,具体取决于关于 test_stream 中的 decltype 检查是否失败。
最后,std::declval 为您提供传递的任何类型的“值”,而无需知道如何构造它。 请注意,这仅在未评估的上下文中才可能,例如 decltype、sizeof 等。


请注意,decltype 不一定需要,因为 sizeof(以及所有未评估的上下文)获得了该增强。 只是 decltype 已经提供了一个类型,因此更加干净。 下面是其中一个重载的 sizeof 版本:

template<class T>
void serialize_imp(std::ostream& os, T const& obj, int,
    int(*)[sizeof((os << obj),0)] = 0)
{
  os << obj;
}

出于同样的原因,intlong 参数仍然存在。 数组指针用于提供可以使用 sizeof 的上下文。

This question is old, but with C++11 we got a new way to check for a functions existence (or existence of any non-type member, really), relying on SFINAE again:

template<class T>
auto serialize_imp(std::ostream& os, T const& obj, int)
    -> decltype(os << obj, void())
{
  os << obj;
}

template<class T>
auto serialize_imp(std::ostream& os, T const& obj, long)
    -> decltype(obj.stream(os), void())
{
  obj.stream(os);
}

template<class T>
auto serialize(std::ostream& os, T const& obj)
    -> decltype(serialize_imp(os, obj, 0), void())
{
  serialize_imp(os, obj, 0);
}

Now onto some explanations. First thing, I use expression SFINAE to exclude the serialize(_imp) functions from overload resolution, if the first expression inside decltype isn't valid (aka, the function doesn't exist).

The void() is used to make the return type of all those functions void.

The 0 argument is used to prefer the os << obj overload if both are available (literal 0 is of type int and as such the first overload is a better match).


Now, you probably want a trait to check if a function exists. Luckily, it's easy to write that. Note, though, that you need to write a trait yourself for every different function name you might want.

#include <type_traits>

template<class>
struct sfinae_true : std::true_type{};

namespace detail{
  template<class T, class A0>
  static auto test_stream(int)
      -> sfinae_true<decltype(std::declval<T>().stream(std::declval<A0>()))>;
  template<class, class A0>
  static auto test_stream(long) -> std::false_type;
} // detail::

template<class T, class Arg>
struct has_stream : decltype(detail::test_stream<T, Arg>(0)){};

Live example.

And on to explanations. First, sfinae_true is a helper type, and it basically amounts to the same as writing decltype(void(std::declval<T>().stream(a0)), std::true_type{}). The advantage is simply that it's shorter.
Next, the struct has_stream : decltype(...) inherits from either std::true_type or std::false_type in the end, depending on whether the decltype check in test_stream fails or not.
Last, std::declval gives you a "value" of whatever type you pass, without you needing to know how you can construct it. Note that this is only possible inside an unevaluated context, such as decltype, sizeof and others.


Note that decltype is not necessarily needed, as sizeof (and all unevaluated contexts) got that enhancement. It's just that decltype already delivers a type and as such is just cleaner. Here's a sizeof version of one of the overloads:

template<class T>
void serialize_imp(std::ostream& os, T const& obj, int,
    int(*)[sizeof((os << obj),0)] = 0)
{
  os << obj;
}

The int and long parameters are still there for the same reason. The array pointer is used to provide a context where sizeof can be used.

围归者 2024-07-14 22:26:57

C++20 - requires 表达式

C++20 带来了概念和各种工具,例如 需要表达式,这是检查函数是否存在的内置方法。 使用它们,您可以重写您的 optionalToString 函数,如下所示:

template<class T>
std::string optionalToString(T* obj)
{
    constexpr bool has_toString = requires(const T& t) {
        t.toString();
    };

    if constexpr (has_toString)
        return obj->toString();
    else
        return "toString not defined";
}

Pre-C++20 - 检测工具包

N4502 提出了一个检测工具包,用于包含到 C++17 标准库中,最终将其纳入库基础 TS v2 中。 它很可能永远不会进入标准,因为它已被 requires 表达式所包含,但它仍然以某种优雅的方式解决了问题。 该工具包引入了一些元函数,包括 std::is_detected 可用于在其顶部轻松编写类型或函数检测元函数。 以下是如何使用它:

template<typename T>
using toString_t = decltype( std::declval<T&>().toString() );

template<typename T>
constexpr bool has_toString = std::is_detected_v<toString_t, T>;

请注意,上面的示例未经测试。 标准库中尚未提供检测工具包,但该提案包含完整的实现,如果您确实需要,可以轻松复制。 它与 C++17 功能 if constexpr 配合得很好:

template<class T>
std::string optionalToString(T* obj)
{
    if constexpr (has_toString<T>)
        return obj->toString();
    else
        return "toString not defined";
}

C++14 - Boost.Hana

Boost.Hana 显然是建立在这个特定示例的基础上的,并在其文档中提供了 C++14 的解决方案,所以我直接引用它:

[...] Hana 提供了一个 is_valid 函数,可以与 C++14 泛型 lambda 结合使用,以获得同一事物的更简洁的实现:

auto has_toString = hana::is_valid([](auto&& obj) -> decltype(obj.toString()) { }); 
  

这给我们留下了一个函数对象has_toString,它返回给定的表达式对于我们传递给它的参数是否有效。 结果作为 IntegralConstant 返回,因此 constexpr 性在这里不是问题,因为函数的结果无论如何都表示为类型。 现在,除了不再那么冗长(这是一句简单的话!)之外,意图也更加清晰了。 其他好处是 has_toString 可以传递给更高阶的算法,并且它也可以在函数范围内定义,因此不需要用实现细节污染命名空间范围。

Boost.TTI

执行此类检查的另一个有点惯用的工具包 - 尽管不太优雅 - 是 Boost.TTI,在 Boost 1.54.0 中引入。 对于您的示例,您必须使用宏 BOOST_TTI_HAS_MEMBER_FUNCTION。 以下是如何使用它:

#include <boost/tti/has_member_function.hpp>

// Generate the metafunction
BOOST_TTI_HAS_MEMBER_FUNCTION(toString)

// Check whether T has a member function toString
// which takes no parameter and returns a std::string
constexpr bool foo = has_member_function_toString<T, std::string>::value;

然后,您可以使用 bool 创建 SFINAE 检查。

解释

BOOST_TTI_HAS_MEMBER_FUNCTION生成元函数has_member_function_toString,它将检查的类型作为其第一个模板参数。 第二个模板参数对应于成员函数的返回类型,后面的参数对应于函数参数的类型。 如果类 T 具有成员函数 std::string toString(),则成员 value 包含 true

或者,has_member_function_toString 可以将成员函数指针作为模板参数。 因此,可以将 has_member_function_toString::value 替换为 has_member_function_toString::value >。

C++20 - requires expressions

With C++20 come concepts and assorted tools such as requires expressions which are a built-in way to check for a function existence. With them you could rewrite your optionalToString function as follows:

template<class T>
std::string optionalToString(T* obj)
{
    constexpr bool has_toString = requires(const T& t) {
        t.toString();
    };

    if constexpr (has_toString)
        return obj->toString();
    else
        return "toString not defined";
}

Pre-C++20 - Detection toolkit

N4502 proposes a detection toolkit for inclusion into the C++17 standard library that eventually made it into the library fundamentals TS v2. It most likely won't ever get into the standard because it has been subsumed by requires expressions since, but it still solves the problem in a somewhat elegant manner. The toolkit introduces some metafunctions, including std::is_detected which can be used to easily write type or function detection metafunctions on the top of it. Here is how you could use it:

template<typename T>
using toString_t = decltype( std::declval<T&>().toString() );

template<typename T>
constexpr bool has_toString = std::is_detected_v<toString_t, T>;

Note that the example above is untested. The detection toolkit is not available in standard libraries yet but the proposal contains a full implementation that you can easily copy if you really need it. It plays nice with the C++17 feature if constexpr:

template<class T>
std::string optionalToString(T* obj)
{
    if constexpr (has_toString<T>)
        return obj->toString();
    else
        return "toString not defined";
}

C++14 - Boost.Hana

Boost.Hana apparently builds upon this specific example and provides a solution for C++14 in its documentation, so I'm going to quote it directly:

[...] Hana provides a is_valid function that can be combined with C++14 generic lambdas to obtain a much cleaner implementation of the same thing:

auto has_toString = hana::is_valid([](auto&& obj) -> decltype(obj.toString()) { });

This leaves us with a function object has_toString which returns whether the given expression is valid on the argument we pass to it. The result is returned as an IntegralConstant, so constexpr-ness is not an issue here because the result of the function is represented as a type anyway. Now, in addition to being less verbose (that's a one liner!), the intent is much clearer. Other benefits are the fact that has_toString can be passed to higher order algorithms and it can also be defined at function scope, so there is no need to pollute the namespace scope with implementation details.

Boost.TTI

Another somewhat idiomatic toolkit to perform such a check - even though less elegant - is Boost.TTI, introduced in Boost 1.54.0. For your example, you would have to use the macro BOOST_TTI_HAS_MEMBER_FUNCTION. Here is how you could use it:

#include <boost/tti/has_member_function.hpp>

// Generate the metafunction
BOOST_TTI_HAS_MEMBER_FUNCTION(toString)

// Check whether T has a member function toString
// which takes no parameter and returns a std::string
constexpr bool foo = has_member_function_toString<T, std::string>::value;

Then, you could use the bool to create a SFINAE check.

Explanation

The macro BOOST_TTI_HAS_MEMBER_FUNCTION generates the metafunction has_member_function_toString which takes the checked type as its first template parameter. The second template parameter corresponds to the return type of the member function, and the following parameters correspond to the types of the function's parameters. The member value contains true if the class T has a member function std::string toString().

Alternatively, has_member_function_toString can take a member function pointer as a template parameter. Therefore, it is possible to replace has_member_function_toString<T, std::string>::value by has_member_function_toString<std::string T::* ()>::value.

幽梦紫曦~ 2024-07-14 22:26:57

C++ 允许使用 SFINAE 来实现此目的(请注意,使用 C++11 功能,这会更简单,因为它支持几乎任意表达式上的扩展 SFINAE - 下面的内容是为了与常见的 C++03 编译器一起工作而设计的):

#define HAS_MEM_FUNC(func, name)                                        \
    template<typename T, typename Sign>                                 \
    struct name {                                                       \
        typedef char yes[1];                                            \
        typedef char no [2];                                            \
        template <typename U, U> struct type_check;                     \
        template <typename _1> static yes &chk(type_check<Sign, &_1::func > *); \
        template <typename   > static no  &chk(...);                    \
        static bool const value = sizeof(chk<T>(0)) == sizeof(yes);     \
    }

上面的模板和宏尝试实例化模板,为其提供成员函数指针类型和实际的成员函数指针。 如果类型不适合,SFINAE 会导致模板被忽略。 用法如下:

HAS_MEM_FUNC(toString, has_to_string);

template<typename T> void
doSomething() {
   if(has_to_string<T, std::string(T::*)()>::value) {
      ...
   } else {
      ...
   }
}

但请注意,您不能只在 if 分支中调用 toString 函数。 由于编译器将检查两个分支的有效性,因此在函数不存在的情况下会失败。 一种方法是再次使用 SFINAE(enable_if 也可以从 boost 获得):

template<bool C, typename T = void>
struct enable_if {
  typedef T type;
};

template<typename T>
struct enable_if<false, T> { };

HAS_MEM_FUNC(toString, has_to_string);

template<typename T> 
typename enable_if<has_to_string<T, 
                   std::string(T::*)()>::value, std::string>::type
doSomething(T * t) {
   /* something when T has toString ... */
   return t->toString();
}

template<typename T> 
typename enable_if<!has_to_string<T, 
                   std::string(T::*)()>::value, std::string>::type
doSomething(T * t) {
   /* something when T doesnt have toString ... */
   return "T::toString() does not exist.";
}

享受使用它的乐趣。 它的优点是它也适用于重载成员函数,也适用于 const 成员函数(记住使用 std::string(T::*)() const )作为成员函数指针类型!)。

C++ allows SFINAE to be used for this (notice that with C++11 features this is simplier because it supports extended SFINAE on nearly arbitrary expressions - the below was crafted to work with common C++03 compilers):

#define HAS_MEM_FUNC(func, name)                                        \
    template<typename T, typename Sign>                                 \
    struct name {                                                       \
        typedef char yes[1];                                            \
        typedef char no [2];                                            \
        template <typename U, U> struct type_check;                     \
        template <typename _1> static yes &chk(type_check<Sign, &_1::func > *); \
        template <typename   > static no  &chk(...);                    \
        static bool const value = sizeof(chk<T>(0)) == sizeof(yes);     \
    }

The above template and macro tries to instantiate a template, giving it a member function pointer type, and the actual member function pointer. If the types do not fit, SFINAE causes the template to be ignored. Usage like this:

HAS_MEM_FUNC(toString, has_to_string);

template<typename T> void
doSomething() {
   if(has_to_string<T, std::string(T::*)()>::value) {
      ...
   } else {
      ...
   }
}

But note that you cannot just call that toString function in that if branch. Since the compiler will check for validity in both branches, that would fail for cases the function doesn't exist. One way is to use SFINAE once again (enable_if can be obtained from boost, too):

template<bool C, typename T = void>
struct enable_if {
  typedef T type;
};

template<typename T>
struct enable_if<false, T> { };

HAS_MEM_FUNC(toString, has_to_string);

template<typename T> 
typename enable_if<has_to_string<T, 
                   std::string(T::*)()>::value, std::string>::type
doSomething(T * t) {
   /* something when T has toString ... */
   return t->toString();
}

template<typename T> 
typename enable_if<!has_to_string<T, 
                   std::string(T::*)()>::value, std::string>::type
doSomething(T * t) {
   /* something when T doesnt have toString ... */
   return "T::toString() does not exist.";
}

Have fun using it. The advantage of it is that it also works for overloaded member functions, and also for const member functions (remember using std::string(T::*)() const as the member function pointer type then!).

逆光飞翔i 2024-07-14 22:26:57

虽然这个问题已经有两年了,但我还是敢于​​补充我的答案。 希望它能够澄清之前无可争议的优秀解决方案。 我采用了 Nicola Bonelli 和 Johannes Schaub 非常有用的答案,并将它们合并到一个解决方案中,恕我直言,该解决方案更具可读性、清晰性,并且不需要 typeof 扩展:

template <class Type>
class TypeHasToString
{
    // This type won't compile if the second template parameter isn't of type T,
    // so I can put a function pointer type in the first parameter and the function
    // itself in the second thus checking that the function has a specific signature.
    template <typename T, T> struct TypeCheck;

    typedef char Yes;
    typedef long No;

    // A helper struct to hold the declaration of the function pointer.
    // Change it if the function signature changes.
    template <typename T> struct ToString
    {
        typedef void (T::*fptr)();
    };

    template <typename T> static Yes HasToString(TypeCheck< typename ToString<T>::fptr, &T::toString >*);
    template <typename T> static No  HasToString(...);

public:
    static bool const value = (sizeof(HasToString<Type>(0)) == sizeof(Yes));
};

我用 gcc 4.1.2 检查了它。
这主要归功于 Nicola Bonelli 和 Johannes Schaub,所以如果我的回答对您有帮助,请给他们投票:)

Though this question is two years old, I'll dare to add my answer. Hopefully it will clarify the previous, indisputably excellent, solution. I took the very helpful answers of Nicola Bonelli and Johannes Schaub and merged them into a solution that is, IMHO, more readable, clear and does not require the typeof extension:

template <class Type>
class TypeHasToString
{
    // This type won't compile if the second template parameter isn't of type T,
    // so I can put a function pointer type in the first parameter and the function
    // itself in the second thus checking that the function has a specific signature.
    template <typename T, T> struct TypeCheck;

    typedef char Yes;
    typedef long No;

    // A helper struct to hold the declaration of the function pointer.
    // Change it if the function signature changes.
    template <typename T> struct ToString
    {
        typedef void (T::*fptr)();
    };

    template <typename T> static Yes HasToString(TypeCheck< typename ToString<T>::fptr, &T::toString >*);
    template <typename T> static No  HasToString(...);

public:
    static bool const value = (sizeof(HasToString<Type>(0)) == sizeof(Yes));
};

I checked it with gcc 4.1.2.
The credit goes mainly to Nicola Bonelli and Johannes Schaub, so give them a vote up if my answer helps you :)

酷遇一生 2024-07-14 22:26:57

C++11 的一个简单解决方案:

template<class T>
auto optionalToString(T* obj)
 -> decltype(  obj->toString()  )
{
    return     obj->toString();
}
auto optionalToString(...) -> string
{
    return "toString not defined";
}

更新,3 年后:(且未经测试)。 为了测试是否存在,我认为这会起作用:

template<class T>
constexpr auto test_has_toString_method(T* obj)
 -> decltype(  obj->toString() , std::true_type{} )
{
    return     obj->toString();
}
constexpr auto test_has_toString_method(...) -> std::false_type
{
    return "toString not defined";
}

A simple solution for C++11:

template<class T>
auto optionalToString(T* obj)
 -> decltype(  obj->toString()  )
{
    return     obj->toString();
}
auto optionalToString(...) -> string
{
    return "toString not defined";
}

Update, 3 years later: (and this is untested). To test for the existence, I think this will work:

template<class T>
constexpr auto test_has_toString_method(T* obj)
 -> decltype(  obj->toString() , std::true_type{} )
{
    return     obj->toString();
}
constexpr auto test_has_toString_method(...) -> std::false_type
{
    return "toString not defined";
}
糖果控 2024-07-14 22:26:57

好吧,这个问题已经有一长串答案了,但我想强调 Morwenn 的评论:有一个针对 C++17 的提案,使它变得非常简单。 请参阅 N4502 了解详细信息,但作为一个独立的示例,请考虑以下内容。

这部分是常量部分,将其放在标题中。

// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4502.pdf.
template <typename...>
using void_t = void;

// Primary template handles all types not supporting the operation.
template <typename, template <typename> class, typename = void_t<>>
struct detect : std::false_type {};

// Specialization recognizes/validates only types supporting the archetype.
template <typename T, template <typename> class Op>
struct detect<T, Op, void_t<Op<T>>> : std::true_type {};

然后是变量部分,您可以在其中指定要查找的内容(类型、成员类型、函数、成员函数等)。 对于OP:

template <typename T>
using toString_t = decltype(std::declval<T>().toString());

template <typename T>
using has_toString = detect<T, toString_t>;

以下示例取自 N4502,显示了更精细的探测:

// Archetypal expression for assignment operation.
template <typename T>
using assign_t = decltype(std::declval<T&>() = std::declval<T const &>())

// Trait corresponding to that archetype.
template <typename T>
using is_assignable = detect<T, assign_t>;

与上述其他实现相比,这个实现相当简单:一组精简的工具(< code>void_t 和 detect)就足够了,不需要毛茸茸的宏。 此外,还报告了(参见N4502),它比以前的方法明显更高效(编译时间和编译器内存消耗)。

这是一个实例。 它可以与 Clang 配合使用,但不幸的是,5.1 之前的 GCC 版本遵循对 C++11 标准的不同解释,导致 void_t 无法按预期工作。 Yakk 已经提供了解决方法:使用以下 void_t 定义 (参数列表中的void_t可以工作,但不能作为返回类型):

#if __GNUC__ < 5 && ! defined __clang__
// https://stackoverflow.com/a/28967049/1353549
template <typename...>
struct voider
{
  using type = void;
};
template <typename...Ts>
using void_t = typename voider<Ts...>::type;
#else
template <typename...>
using void_t = void;
#endif

Well, this question has a long list of answers already, but I would like to emphasize the comment from Morwenn: there is a proposal for C++17 that makes it really much simpler. See N4502 for details, but as a self-contained example consider the following.

This part is the constant part, put it in a header.

// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4502.pdf.
template <typename...>
using void_t = void;

// Primary template handles all types not supporting the operation.
template <typename, template <typename> class, typename = void_t<>>
struct detect : std::false_type {};

// Specialization recognizes/validates only types supporting the archetype.
template <typename T, template <typename> class Op>
struct detect<T, Op, void_t<Op<T>>> : std::true_type {};

then there is the variable part, where you specify what you are looking for (a type, a member type, a function, a member function etc.). In the case of the OP:

template <typename T>
using toString_t = decltype(std::declval<T>().toString());

template <typename T>
using has_toString = detect<T, toString_t>;

The following example, taken from N4502, shows a more elaborate probe:

// Archetypal expression for assignment operation.
template <typename T>
using assign_t = decltype(std::declval<T&>() = std::declval<T const &>())

// Trait corresponding to that archetype.
template <typename T>
using is_assignable = detect<T, assign_t>;

Compared to the other implementations described above, this one is fairly simple: a reduced set of tools (void_t and detect) suffices, no need for hairy macros. Besides, it was reported (see N4502) that it is measurably more efficient (compile-time and compiler memory consumption) than previous approaches.

Here is a live example. It works fine with Clang, but unfortunately, GCC versions before 5.1 followed a different interpretation of the C++11 standard which caused void_t to not work as expected. Yakk already provided the work-around: use the following definition of void_t (void_t in parameter list works but not as return type):

#if __GNUC__ < 5 && ! defined __clang__
// https://stackoverflow.com/a/28967049/1353549
template <typename...>
struct voider
{
  using type = void;
};
template <typename...Ts>
using void_t = typename voider<Ts...>::type;
#else
template <typename...>
using void_t = void;
#endif
心凉怎暖 2024-07-14 22:26:57

这就是类型特征的用途。 不幸的是,它们必须手动定义。 对于您的情况,请想象以下情况:

template <typename T>
struct response_trait {
    static bool const has_tostring = false;
};

template <>
struct response_trait<your_type_with_tostring> {
    static bool const has_tostring = true;
}

This is what type traits are there for. Unfortunately, they have to be defined manually. In your case, imagine the following:

template <typename T>
struct response_trait {
    static bool const has_tostring = false;
};

template <>
struct response_trait<your_type_with_tostring> {
    static bool const has_tostring = true;
}
傾城如夢未必闌珊 2024-07-14 22:26:57

在 C++17 中实现此目的的另一种方法(受 boost:hana 启发)。

此解决方案不需要 has_something SFINAE 类型特征类。

溶液

/// @file has_something.h
/// The `has_member` macro implementation

#pragma once

#include <type_traits>

template<typename T, typename F>
constexpr auto has_member_impl(F&& f) -> decltype(f(std::declval<T>()), true)
{
  return true;
}

template<typename>
constexpr bool has_member_impl(...) { return false; }

#define has_member(T, EXPR) \
 has_member_impl<T>( [](auto&& obj)->decltype(obj.EXPR){} )

测试

/// @file test.cpp

#include "has_something.h"

#include <iostream>
#include <string>

struct Example {
    int Foo;
    void Bar() {}
    std::string toString() { return "Hello from Example::toString()!"; }
};

struct Example2 {
    int X;
};

template<class T>
std::string optionalToString(T* obj)
{
    if constexpr(has_member(T, toString()))
        return obj->toString();
    else
        return "toString not defined";
}

int main() {
    static_assert(has_member(Example, Foo), 
                  "Example class must have Foo member");
    static_assert(has_member(Example, Bar()), 
                  "Example class must have Bar() member function");
    static_assert(!has_member(Example, ZFoo), 
                  "Example class must not have ZFoo member.");
    static_assert(!has_member(Example, ZBar()), 
                  "Example class must not have ZBar() member function");

    Example e1;
    Example2 e2;

    std::cout << "e1: " << optionalToString(&e1) << "\n";
    std::cout << "e1: " << optionalToString(&e2) << "\n";
}

Yet another way to do it in C++17 (inspired by boost:hana).

This solution does not require has_something<T> SFINAE type traits classes.

Solution

/// @file has_something.h
/// The `has_member` macro implementation

#pragma once

#include <type_traits>

template<typename T, typename F>
constexpr auto has_member_impl(F&& f) -> decltype(f(std::declval<T>()), true)
{
  return true;
}

template<typename>
constexpr bool has_member_impl(...) { return false; }

#define has_member(T, EXPR) \
 has_member_impl<T>( [](auto&& obj)->decltype(obj.EXPR){} )

Test

/// @file test.cpp

#include "has_something.h"

#include <iostream>
#include <string>

struct Example {
    int Foo;
    void Bar() {}
    std::string toString() { return "Hello from Example::toString()!"; }
};

struct Example2 {
    int X;
};

template<class T>
std::string optionalToString(T* obj)
{
    if constexpr(has_member(T, toString()))
        return obj->toString();
    else
        return "toString not defined";
}

int main() {
    static_assert(has_member(Example, Foo), 
                  "Example class must have Foo member");
    static_assert(has_member(Example, Bar()), 
                  "Example class must have Bar() member function");
    static_assert(!has_member(Example, ZFoo), 
                  "Example class must not have ZFoo member.");
    static_assert(!has_member(Example, ZBar()), 
                  "Example class must not have ZBar() member function");

    Example e1;
    Example2 e2;

    std::cout << "e1: " << optionalToString(&e1) << "\n";
    std::cout << "e1: " << optionalToString(&e2) << "\n";
}
给我一枪 2024-07-14 22:26:57

这是我在 C++20 中找到的最简洁的方法,与您的问题非常接近:

template<class T>
std::string optionalToString(T* obj)
{
  if constexpr (requires { obj->toString(); })
    return obj->toString();
  else
    return "toString not defined";
}

See it live on godbolt: https://gcc.godbolt.org/z/5jb1d93Ms

Here is the most concise way I found in C++20, which is very close from your question:

template<class T>
std::string optionalToString(T* obj)
{
  if constexpr (requires { obj->toString(); })
    return obj->toString();
  else
    return "toString not defined";
}

See it live on godbolt: https://gcc.godbolt.org/z/5jb1d93Ms

三生池水覆流年 2024-07-14 22:26:57

这是针对“如果我做了 X,它会编译吗?”这一一般问题的 C++11 解决方案。

template<class> struct type_sink { typedef void type; }; // consumes a type, and makes it `void`
template<class T> using type_sink_t = typename type_sink<T>::type;
template<class T, class=void> struct has_to_string : std::false_type {}; \
template<class T> struct has_to_string<
  T,
  type_sink_t< decltype( std::declval<T>().toString() ) >
>: std::true_type {};

特征 has_to_string 使得 has_to_string::valuetrue 当且仅当 T 有一个方法 < code>.toString 可以在此上下文中使用 0 个参数进行调用。

接下来,我将使用标签调度:

namespace details {
  template<class T>
  std::string optionalToString_helper(T* obj, std::true_type /*has_to_string*/) {
    return obj->toString();
  }
  template<class T>
  std::string optionalToString_helper(T* obj, std::false_type /*has_to_string*/) {
    return "toString not defined";
  }
}
template<class T>
std::string optionalToString(T* obj) {
  return details::optionalToString_helper( obj, has_to_string<T>{} );
}

这往往比复杂的 SFINAE 表达式更易于维护。

如果您发现自己经常这样做,则可以使用宏编写这些特征,但它们相对简单(每行几行),因此可能不值得:

#define MAKE_CODE_TRAIT( TRAIT_NAME, ... ) \
template<class T, class=void> struct TRAIT_NAME : std::false_type {}; \
template<class T> struct TRAIT_NAME< T, type_sink_t< decltype( __VA_ARGS__ ) > >: std::true_type {};

上面的作用是创建一个宏MAKE_CODE_TRAIT。 您向其传递所需特征的名称,以及一些可以测试类型 T 的代码。 因此:

MAKE_CODE_TRAIT( has_to_string, std::declval<T>().toString() )

创建了上述特征类。

顺便说一句,上述技术是 MS 所谓的“表达式 SFINAE”的一部分,他们的 2013 编译器很难失败。

请注意,在 C++1y 中,可以使用以下语法:

template<class T>
std::string optionalToString(T* obj) {
  return compiled_if< has_to_string >(*obj, [&](auto&& obj) {
    return obj.toString();
  }) *compiled_else ([&]{ 
    return "toString not defined";
  });
}

这是滥用大量 C++ 功能的内联编译条件分支。 这样做可能不值得,因为(内联代码)的好处不值得(几乎没有人理解它是如何工作的)成本,但上述解决方案的存在可能会令人感兴趣。

This is a C++11 solution for the general problem if "If I did X, would it compile?"

template<class> struct type_sink { typedef void type; }; // consumes a type, and makes it `void`
template<class T> using type_sink_t = typename type_sink<T>::type;
template<class T, class=void> struct has_to_string : std::false_type {}; \
template<class T> struct has_to_string<
  T,
  type_sink_t< decltype( std::declval<T>().toString() ) >
>: std::true_type {};

Trait has_to_string such that has_to_string<T>::value is true if and only if T has a method .toString that can be invoked with 0 arguments in this context.

Next, I'd use tag dispatching:

namespace details {
  template<class T>
  std::string optionalToString_helper(T* obj, std::true_type /*has_to_string*/) {
    return obj->toString();
  }
  template<class T>
  std::string optionalToString_helper(T* obj, std::false_type /*has_to_string*/) {
    return "toString not defined";
  }
}
template<class T>
std::string optionalToString(T* obj) {
  return details::optionalToString_helper( obj, has_to_string<T>{} );
}

which tends to be more maintainable than complex SFINAE expressions.

You can write these traits with a macro if you find yourself doing it alot, but they are relatively simple (a few lines each) so maybe not worth it:

#define MAKE_CODE_TRAIT( TRAIT_NAME, ... ) \
template<class T, class=void> struct TRAIT_NAME : std::false_type {}; \
template<class T> struct TRAIT_NAME< T, type_sink_t< decltype( __VA_ARGS__ ) > >: std::true_type {};

what the above does is create a macro MAKE_CODE_TRAIT. You pass it the name of the trait you want, and some code that can test the type T. Thus:

MAKE_CODE_TRAIT( has_to_string, std::declval<T>().toString() )

creates the above traits class.

As an aside, the above technique is part of what MS calls "expression SFINAE", and their 2013 compiler fails pretty hard.

Note that in C++1y the following syntax is possible:

template<class T>
std::string optionalToString(T* obj) {
  return compiled_if< has_to_string >(*obj, [&](auto&& obj) {
    return obj.toString();
  }) *compiled_else ([&]{ 
    return "toString not defined";
  });
}

which is an inline compilation conditional branch that abuses lots of C++ features. Doing so is probably not worth it, as the benefit (of code being inline) is not worth the cost (of next to nobody understanding how it works), but the existence of that above solution may be of interest.

江南烟雨〆相思醉 2024-07-14 22:26:57

以下是一些使用片段:
*所有这一切的核心是

检查给定类中的成员x。 可以是 var、func、class、union 或 enum:

CREATE_MEMBER_CHECK(x);
bool has_x = has_member_x<class_to_check_for_x>::value;

检查成员函数 void x()

//Func signature MUST have T as template variable here... simpler this way :\
CREATE_MEMBER_FUNC_SIG_CHECK(x, void (T::*)(), void__x);
bool has_func_sig_void__x = has_member_func_void__x<class_to_check_for_x>::value;

检查成员变量 x

CREATE_MEMBER_VAR_CHECK(x);
bool has_var_x = has_member_var_x<class_to_check_for_x>::value;

检查成员类x

CREATE_MEMBER_CLASS_CHECK(x);
bool has_class_x = has_member_class_x<class_to_check_for_x>::value;

检查成员联合x

CREATE_MEMBER_UNION_CHECK(x);
bool has_union_x = has_member_union_x<class_to_check_for_x>::value;

检查成员枚举x

CREATE_MEMBER_ENUM_CHECK(x);
bool has_enum_x = has_member_enum_x<class_to_check_for_x>::value;

检查任何成员函数x,无论签名如何:

CREATE_MEMBER_CHECK(x);
CREATE_MEMBER_VAR_CHECK(x);
CREATE_MEMBER_CLASS_CHECK(x);
CREATE_MEMBER_UNION_CHECK(x);
CREATE_MEMBER_ENUM_CHECK(x);
CREATE_MEMBER_FUNC_CHECK(x);
bool has_any_func_x = has_member_func_x<class_to_check_for_x>::value;

CREATE_MEMBER_CHECKS(x);  //Just stamps out the same macro calls as above.
bool has_any_func_x = has_member_func_x<class_to_check_for_x>::value;

详细信息和核心:

/*
    - Multiple inheritance forces ambiguity of member names.
    - SFINAE is used to make aliases to member names.
    - Expression SFINAE is used in just one generic has_member that can accept
      any alias we pass it.
*/

//Variadic to force ambiguity of class members.  C++11 and up.
template <typename... Args> struct ambiguate : public Args... {};

//Non-variadic version of the line above.
//template <typename A, typename B> struct ambiguate : public A, public B {};

template<typename A, typename = void>
struct got_type : std::false_type {};

template<typename A>
struct got_type<A> : std::true_type {
    typedef A type;
};

template<typename T, T>
struct sig_check : std::true_type {};

template<typename Alias, typename AmbiguitySeed>
struct has_member {
    template<typename C> static char ((&f(decltype(&C::value))))[1];
    template<typename C> static char ((&f(...)))[2];

    //Make sure the member name is consistently spelled the same.
    static_assert(
        (sizeof(f<AmbiguitySeed>(0)) == 1)
        , "Member name specified in AmbiguitySeed is different from member name specified in Alias, or wrong Alias/AmbiguitySeed has been specified."
    );

    static bool const value = sizeof(f<Alias>(0)) == 2;
};

宏(El Diablo!):

CREATE_MEMBER_CHECK:

//Check for any member with given name, whether var, func, class, union, enum.
#define CREATE_MEMBER_CHECK(member)                                         \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct Alias_##member;                                                      \
                                                                            \
template<typename T>                                                        \
struct Alias_##member <                                                     \
    T, std::integral_constant<bool, got_type<decltype(&T::member)>::value>  \
> { static const decltype(&T::member) value; };                             \
                                                                            \
struct AmbiguitySeed_##member { char member; };                             \
                                                                            \
template<typename T>                                                        \
struct has_member_##member {                                                \
    static const bool value                                                 \
        = has_member<                                                       \
            Alias_##member<ambiguate<T, AmbiguitySeed_##member>>            \
            , Alias_##member<AmbiguitySeed_##member>                        \
        >::value                                                            \
    ;                                                                       \
}

CREATE_MEMBER_VAR_CHECK:

//Check for member variable with given name.
#define CREATE_MEMBER_VAR_CHECK(var_name)                                   \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct has_member_var_##var_name : std::false_type {};                      \
                                                                            \
template<typename T>                                                        \
struct has_member_var_##var_name<                                           \
    T                                                                       \
    , std::integral_constant<                                               \
        bool                                                                \
        , !std::is_member_function_pointer<decltype(&T::var_name)>::value   \
    >                                                                       \
> : std::true_type {}

CREATE_MEMBER_FUNC_SIG_CHECK:

//Check for member function with given name AND signature.
#define CREATE_MEMBER_FUNC_SIG_CHECK(func_name, func_sig, templ_postfix)    \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct has_member_func_##templ_postfix : std::false_type {};                \
                                                                            \
template<typename T>                                                        \
struct has_member_func_##templ_postfix<                                     \
    T, std::integral_constant<                                              \
        bool                                                                \
        , sig_check<func_sig, &T::func_name>::value                         \
    >                                                                       \
> : std::true_type {}

CREATE_MEMBER_CLASS_CHECK:

//Check for member class with given name.
#define CREATE_MEMBER_CLASS_CHECK(class_name)               \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_class_##class_name : std::false_type {};  \
                                                            \
template<typename T>                                        \
struct has_member_class_##class_name<                       \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_class<                                    \
            typename got_type<typename T::class_name>::type \
        >::value                                            \
    >                                                       \
> : std::true_type {}

CREATE_MEMBER_UNION_CHECK

//Check for member union with given name.
#define CREATE_MEMBER_UNION_CHECK(union_name)               \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_union_##union_name : std::false_type {};  \
                                                            \
template<typename T>                                        \
struct has_member_union_##union_name<                       \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_union<                                    \
            typename got_type<typename T::union_name>::type \
        >::value                                            \
    >                                                       \
> : std::true_type {}

//Check for member enum with given name.
#define CREATE_MEMBER_ENUM_CHECK(enum_name)                 \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_enum_##enum_name : std::false_type {};    \
                                                            \
template<typename T>                                        \
struct has_member_enum_##enum_name<                         \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_enum<                                     \
            typename got_type<typename T::enum_name>::type  \
        >::value                                            \
    >                                                       \
> : std::true_type {}

CREATE_MEMBER_ENUM_CHECK: CREATE_MEMBER_FUNC_CHECK:

//Check for function with given name, any signature.
#define CREATE_MEMBER_FUNC_CHECK(func)          \
template<typename T>                            \
struct has_member_func_##func {                 \
    static const bool value                     \
        = has_member_##func<T>::value           \
        && !has_member_var_##func<T>::value     \
        && !has_member_class_##func<T>::value   \
        && !has_member_union_##func<T>::value   \
        && !has_member_enum_##func<T>::value    \
    ;                                           \
}

CREATE_MEMBER_CHECKS:

//Create all the checks for one member.  Does NOT include func sig checks.
#define CREATE_MEMBER_CHECKS(member)    \
CREATE_MEMBER_CHECK(member);            \
CREATE_MEMBER_VAR_CHECK(member);        \
CREATE_MEMBER_CLASS_CHECK(member);      \
CREATE_MEMBER_UNION_CHECK(member);      \
CREATE_MEMBER_ENUM_CHECK(member);       \
CREATE_MEMBER_FUNC_CHECK(member)

Here are some usage snippets:
*The guts for all this are farther down

Check for member x in a given class. Could be var, func, class, union, or enum:

CREATE_MEMBER_CHECK(x);
bool has_x = has_member_x<class_to_check_for_x>::value;

Check for member function void x():

//Func signature MUST have T as template variable here... simpler this way :\
CREATE_MEMBER_FUNC_SIG_CHECK(x, void (T::*)(), void__x);
bool has_func_sig_void__x = has_member_func_void__x<class_to_check_for_x>::value;

Check for member variable x:

CREATE_MEMBER_VAR_CHECK(x);
bool has_var_x = has_member_var_x<class_to_check_for_x>::value;

Check for member class x:

CREATE_MEMBER_CLASS_CHECK(x);
bool has_class_x = has_member_class_x<class_to_check_for_x>::value;

Check for member union x:

CREATE_MEMBER_UNION_CHECK(x);
bool has_union_x = has_member_union_x<class_to_check_for_x>::value;

Check for member enum x:

CREATE_MEMBER_ENUM_CHECK(x);
bool has_enum_x = has_member_enum_x<class_to_check_for_x>::value;

Check for any member function x regardless of signature:

CREATE_MEMBER_CHECK(x);
CREATE_MEMBER_VAR_CHECK(x);
CREATE_MEMBER_CLASS_CHECK(x);
CREATE_MEMBER_UNION_CHECK(x);
CREATE_MEMBER_ENUM_CHECK(x);
CREATE_MEMBER_FUNC_CHECK(x);
bool has_any_func_x = has_member_func_x<class_to_check_for_x>::value;

OR

CREATE_MEMBER_CHECKS(x);  //Just stamps out the same macro calls as above.
bool has_any_func_x = has_member_func_x<class_to_check_for_x>::value;

Details and core:

/*
    - Multiple inheritance forces ambiguity of member names.
    - SFINAE is used to make aliases to member names.
    - Expression SFINAE is used in just one generic has_member that can accept
      any alias we pass it.
*/

//Variadic to force ambiguity of class members.  C++11 and up.
template <typename... Args> struct ambiguate : public Args... {};

//Non-variadic version of the line above.
//template <typename A, typename B> struct ambiguate : public A, public B {};

template<typename A, typename = void>
struct got_type : std::false_type {};

template<typename A>
struct got_type<A> : std::true_type {
    typedef A type;
};

template<typename T, T>
struct sig_check : std::true_type {};

template<typename Alias, typename AmbiguitySeed>
struct has_member {
    template<typename C> static char ((&f(decltype(&C::value))))[1];
    template<typename C> static char ((&f(...)))[2];

    //Make sure the member name is consistently spelled the same.
    static_assert(
        (sizeof(f<AmbiguitySeed>(0)) == 1)
        , "Member name specified in AmbiguitySeed is different from member name specified in Alias, or wrong Alias/AmbiguitySeed has been specified."
    );

    static bool const value = sizeof(f<Alias>(0)) == 2;
};

Macros (El Diablo!):

CREATE_MEMBER_CHECK:

//Check for any member with given name, whether var, func, class, union, enum.
#define CREATE_MEMBER_CHECK(member)                                         \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct Alias_##member;                                                      \
                                                                            \
template<typename T>                                                        \
struct Alias_##member <                                                     \
    T, std::integral_constant<bool, got_type<decltype(&T::member)>::value>  \
> { static const decltype(&T::member) value; };                             \
                                                                            \
struct AmbiguitySeed_##member { char member; };                             \
                                                                            \
template<typename T>                                                        \
struct has_member_##member {                                                \
    static const bool value                                                 \
        = has_member<                                                       \
            Alias_##member<ambiguate<T, AmbiguitySeed_##member>>            \
            , Alias_##member<AmbiguitySeed_##member>                        \
        >::value                                                            \
    ;                                                                       \
}

CREATE_MEMBER_VAR_CHECK:

//Check for member variable with given name.
#define CREATE_MEMBER_VAR_CHECK(var_name)                                   \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct has_member_var_##var_name : std::false_type {};                      \
                                                                            \
template<typename T>                                                        \
struct has_member_var_##var_name<                                           \
    T                                                                       \
    , std::integral_constant<                                               \
        bool                                                                \
        , !std::is_member_function_pointer<decltype(&T::var_name)>::value   \
    >                                                                       \
> : std::true_type {}

CREATE_MEMBER_FUNC_SIG_CHECK:

//Check for member function with given name AND signature.
#define CREATE_MEMBER_FUNC_SIG_CHECK(func_name, func_sig, templ_postfix)    \
                                                                            \
template<typename T, typename = std::true_type>                             \
struct has_member_func_##templ_postfix : std::false_type {};                \
                                                                            \
template<typename T>                                                        \
struct has_member_func_##templ_postfix<                                     \
    T, std::integral_constant<                                              \
        bool                                                                \
        , sig_check<func_sig, &T::func_name>::value                         \
    >                                                                       \
> : std::true_type {}

CREATE_MEMBER_CLASS_CHECK:

//Check for member class with given name.
#define CREATE_MEMBER_CLASS_CHECK(class_name)               \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_class_##class_name : std::false_type {};  \
                                                            \
template<typename T>                                        \
struct has_member_class_##class_name<                       \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_class<                                    \
            typename got_type<typename T::class_name>::type \
        >::value                                            \
    >                                                       \
> : std::true_type {}

CREATE_MEMBER_UNION_CHECK:

//Check for member union with given name.
#define CREATE_MEMBER_UNION_CHECK(union_name)               \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_union_##union_name : std::false_type {};  \
                                                            \
template<typename T>                                        \
struct has_member_union_##union_name<                       \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_union<                                    \
            typename got_type<typename T::union_name>::type \
        >::value                                            \
    >                                                       \
> : std::true_type {}

CREATE_MEMBER_ENUM_CHECK:

//Check for member enum with given name.
#define CREATE_MEMBER_ENUM_CHECK(enum_name)                 \
                                                            \
template<typename T, typename = std::true_type>             \
struct has_member_enum_##enum_name : std::false_type {};    \
                                                            \
template<typename T>                                        \
struct has_member_enum_##enum_name<                         \
    T                                                       \
    , std::integral_constant<                               \
        bool                                                \
        , std::is_enum<                                     \
            typename got_type<typename T::enum_name>::type  \
        >::value                                            \
    >                                                       \
> : std::true_type {}

CREATE_MEMBER_FUNC_CHECK:

//Check for function with given name, any signature.
#define CREATE_MEMBER_FUNC_CHECK(func)          \
template<typename T>                            \
struct has_member_func_##func {                 \
    static const bool value                     \
        = has_member_##func<T>::value           \
        && !has_member_var_##func<T>::value     \
        && !has_member_class_##func<T>::value   \
        && !has_member_union_##func<T>::value   \
        && !has_member_enum_##func<T>::value    \
    ;                                           \
}

CREATE_MEMBER_CHECKS:

//Create all the checks for one member.  Does NOT include func sig checks.
#define CREATE_MEMBER_CHECKS(member)    \
CREATE_MEMBER_CHECK(member);            \
CREATE_MEMBER_VAR_CHECK(member);        \
CREATE_MEMBER_CLASS_CHECK(member);      \
CREATE_MEMBER_UNION_CHECK(member);      \
CREATE_MEMBER_ENUM_CHECK(member);       \
CREATE_MEMBER_FUNC_CHECK(member)
池予 2024-07-14 22:26:57

使用 C++ 20,您可以编写以下内容:

template<typename T>
concept has_toString = requires(const T& t) {
    t.toString();
};

template<typename T>
std::string optionalToString(const T& obj)
{
    if constexpr (has_toString<T>)
        return obj.toString();
    else
        return "toString not defined";
}

With C++ 20 you can write the following:

template<typename T>
concept has_toString = requires(const T& t) {
    t.toString();
};

template<typename T>
std::string optionalToString(const T& obj)
{
    if constexpr (has_toString<T>)
        return obj.toString();
    else
        return "toString not defined";
}
音盲 2024-07-14 22:26:57

我在另一个线程中写了一个答案,该线程(与上面的解决方案不同)还检查继承的成员函数:

SFINAE 检查继承的成员函数

以下是该解决方案的一些示例:

示例 1:

我们正在检查具有以下签名的成员:
T::const_iterator begin() const

template<class T> struct has_const_begin
{
    typedef char (&Yes)[1];
    typedef char (&No)[2];

    template<class U> 
    static Yes test(U const * data, 
                    typename std::enable_if<std::is_same<
                             typename U::const_iterator, 
                             decltype(data->begin())
                    >::value>::type * = 0);
    static No test(...);
    static const bool value = sizeof(Yes) == sizeof(has_const_begin::test((typename std::remove_reference<T>::type*)0));
};

请注意,它甚至检查方法的常量性,并且也适用于原始类型。 (我的意思是 has_const_begin::value 为 false,不会导致编译时错误。)

示例 2

现在我们正在寻找签名: void foo(MyClass&, unsigned)

template<class T> struct has_foo
{
    typedef char (&Yes)[1];
    typedef char (&No)[2];

    template<class U>
    static Yes test(U * data, MyClass* arg1 = 0,
                    typename std::enable_if<std::is_void<
                             decltype(data->foo(*arg1, 1u))
                    >::value>::type * = 0);
    static No test(...);
    static const bool value = sizeof(Yes) == sizeof(has_foo::test((typename std::remove_reference<T>::type*)0));
};

请注意,MyClass 不必是默认可构造的或满足任何特殊概念。 该技术也适用于模板成员。

我热切地等待对此的意见。

I wrote an answer to this in another thread that (unlike the solutions above) also checks inherited member functions:

SFINAE to check for inherited member functions

Here are some example from that solution:

Example1:

We are checking for a member with the following signature:
T::const_iterator begin() const

template<class T> struct has_const_begin
{
    typedef char (&Yes)[1];
    typedef char (&No)[2];

    template<class U> 
    static Yes test(U const * data, 
                    typename std::enable_if<std::is_same<
                             typename U::const_iterator, 
                             decltype(data->begin())
                    >::value>::type * = 0);
    static No test(...);
    static const bool value = sizeof(Yes) == sizeof(has_const_begin::test((typename std::remove_reference<T>::type*)0));
};

Please notice that it even checks the constness of the method, and works with primitive types, as well. (I mean has_const_begin<int>::value is false and doesn't cause a compile-time error.)

Example 2

Now we are looking for the signature: void foo(MyClass&, unsigned)

template<class T> struct has_foo
{
    typedef char (&Yes)[1];
    typedef char (&No)[2];

    template<class U>
    static Yes test(U * data, MyClass* arg1 = 0,
                    typename std::enable_if<std::is_void<
                             decltype(data->foo(*arg1, 1u))
                    >::value>::type * = 0);
    static No test(...);
    static const bool value = sizeof(Yes) == sizeof(has_foo::test((typename std::remove_reference<T>::type*)0));
};

Please notice that MyClass doesn't has to be default constructible or to satisfy any special concept. The technique works with template members, as well.

I am eagerly waiting opinions regarding this.

我做我的改变 2024-07-14 22:26:57

如果该方法恰好在基类中定义,则 litb 在此提供的标准 C++ 解决方案将无法按预期工作。

有关处理这种情况的解决方案,请参阅:

俄语:
http://www.rsdn.ru/forum/message/2759773.1.aspx

Roman.Perepelitsa 的英文翻译:
http://groups .google.com/group/comp.lang.c++.moderated/tree/browse_frm/thread/4f7c7a96f9afbe44/c95a7b4c645e449f?pli=1

这太聪明了。 然而,此解决方案的一个问题是,如果正在测试的类型不能用作基类(例如原始类型),则会出现编译器错误。

在 Visual Studio 中,我注意到,如果使用没有参数的方法,则需要一对额外的需要在 sizeof 表达式中的参数周围插入冗余 ( ) 来 ductuce( ) 。

The standard C++ solution presented here by litb will not work as expected if the method happens to be defined in a base class.

For a solution that handles this situation refer to :

In Russian :
http://www.rsdn.ru/forum/message/2759773.1.aspx

English Translation by Roman.Perepelitsa :
http://groups.google.com/group/comp.lang.c++.moderated/tree/browse_frm/thread/4f7c7a96f9afbe44/c95a7b4c645e449f?pli=1

It is insanely clever. However one issue with this solutiion is that gives compiler errors if the type being tested is one that cannot be used as a base class (e.g. primitive types)

In Visual Studio, I noticed that if working with method having no arguments, an extra pair of redundant ( ) needs to be inserted around the argments to deduce( ) in the sizeof expression.

涫野音 2024-07-14 22:26:57

这是一个很好的小谜题 - 很好的问题!

这是 Nicola Bonelli 的解决方案 不依赖于非标准 typeof 运算符。

不幸的是,它不适用于 GCC (MinGW) 3.4.5 或 Digital Mars 8.42n,但它适用于所有版本的 MSVC(包括 VC6)和 Comeau C++。

较长的注释块包含有关其工作原理(或应该工作)的详细信息。 正如它所说,我不确定哪种行为符合标准 - 我欢迎对此发表评论。


更新 - 2008 年 11 月 7 日:

看起来虽然此代码在语法上是正确的,但 MSVC 和 Comeau C++ 显示的行为不遵循标准(感谢 Leon Timmermanslitb 为我指明了正确的方向)。 C++03 标准规定如下:

14.6.2 依赖名称 [temp.dep]

第 3 段

在类模板的定义中
或类模板的成员,如果
类模板的基类
取决于模板参数,
不检查基类范围
在非限定名称查找期间
在定义点
类模板或成员或在
类模板的实例化或
会员。

因此,看起来当 MSVC 或 Comeau 考虑 TtoString() 成员函数在 doToString() 当模板被实例化时,这是不正确的(即使这实际上是我在这种情况下寻找的行为)。

GCC 和 Digital Mars 的行为看起来是正确的 - 在这两种情况下,非成员 toString() 函数都绑定到调用。

老鼠 - 我以为我可能找到了一个聪明的解决方案,但我发现了几个编译器错误......


#include <iostream>
#include <string>

struct Hello
{
    std::string toString() {
        return "Hello";
    }
};

struct Generic {};


// the following namespace keeps the toString() method out of
//  most everything - except the other stuff in this
//  compilation unit

namespace {
    std::string toString()
    {
        return "toString not defined";
    }

    template <typename T>
    class optionalToStringImpl : public T
    {
    public:
        std::string doToString() {

            // in theory, the name lookup for this call to 
            //  toString() should find the toString() in 
            //  the base class T if one exists, but if one 
            //  doesn't exist in the base class, it'll 
            //  find the free toString() function in 
            //  the private namespace.
            //
            // This theory works for MSVC (all versions
            //  from VC6 to VC9) and Comeau C++, but
            //  does not work with MinGW 3.4.5 or 
            //  Digital Mars 8.42n
            //
            // I'm honestly not sure what the standard says 
            //  is the correct behavior here - it's sort 
            //  of like ADL (Argument Dependent Lookup - 
            //  also known as Koenig Lookup) but without
            //  arguments (except the implied "this" pointer)

            return toString();
        }
    };
}

template <typename T>
std::string optionalToString(T & obj)
{
    // ugly, hacky cast...
    optionalToStringImpl<T>* temp = reinterpret_cast<optionalToStringImpl<T>*>( &obj);

    return temp->doToString();
}



int
main(int argc, char *argv[])
{
    Hello helloObj;
    Generic genericObj;

    std::cout << optionalToString( helloObj) << std::endl;
    std::cout << optionalToString( genericObj) << std::endl;
    return 0;
}

Now this was a nice little puzzle - great question!

Here's an alternative to Nicola Bonelli's solution that does not rely on the non-standard typeof operator.

Unfortunately, it does not work on GCC (MinGW) 3.4.5 or Digital Mars 8.42n, but it does work on all versions of MSVC (including VC6) and on Comeau C++.

The longer comment block has the details on how it works (or is supposed to work). As it says, I'm not sure which behavior is standards compliant - I'd welcome commentary on that.


update - 7 Nov 2008:

It looks like while this code is syntactically correct, the behavior that MSVC and Comeau C++ show does not follow the standard (thanks to Leon Timmermans and litb for pointing me in the right direction). The C++03 standard says the following:

14.6.2 Dependent names [temp.dep]

Paragraph 3

In the definition of a class template
or a member of a class template, if a
base class of the class template
depends on a template-parameter, the
base class scope is not examined
during unqualified name lookup either
at the point of definition of the
class template or member or during an
instantiation of the class template or
member.

So, it looks like that when MSVC or Comeau consider the toString() member function of T performing name lookup at the call site in doToString() when the template is instantiated, that is incorrect (even though it's actually the behavior I was looking for in this case).

The behavior of GCC and Digital Mars looks to be correct - in both cases the non-member toString() function is bound to the call.

Rats - I thought I might have found a clever solution, instead I uncovered a couple compiler bugs...


#include <iostream>
#include <string>

struct Hello
{
    std::string toString() {
        return "Hello";
    }
};

struct Generic {};


// the following namespace keeps the toString() method out of
//  most everything - except the other stuff in this
//  compilation unit

namespace {
    std::string toString()
    {
        return "toString not defined";
    }

    template <typename T>
    class optionalToStringImpl : public T
    {
    public:
        std::string doToString() {

            // in theory, the name lookup for this call to 
            //  toString() should find the toString() in 
            //  the base class T if one exists, but if one 
            //  doesn't exist in the base class, it'll 
            //  find the free toString() function in 
            //  the private namespace.
            //
            // This theory works for MSVC (all versions
            //  from VC6 to VC9) and Comeau C++, but
            //  does not work with MinGW 3.4.5 or 
            //  Digital Mars 8.42n
            //
            // I'm honestly not sure what the standard says 
            //  is the correct behavior here - it's sort 
            //  of like ADL (Argument Dependent Lookup - 
            //  also known as Koenig Lookup) but without
            //  arguments (except the implied "this" pointer)

            return toString();
        }
    };
}

template <typename T>
std::string optionalToString(T & obj)
{
    // ugly, hacky cast...
    optionalToStringImpl<T>* temp = reinterpret_cast<optionalToStringImpl<T>*>( &obj);

    return temp->doToString();
}



int
main(int argc, char *argv[])
{
    Hello helloObj;
    Generic genericObj;

    std::cout << optionalToString( helloObj) << std::endl;
    std::cout << optionalToString( genericObj) << std::endl;
    return 0;
}
说好的呢 2024-07-14 22:26:57

通过编写 Has_foo 概念检查,使用 SFINAE 和模板部分特化的示例:

#include <type_traits>
struct A{};

struct B{ int foo(int a, int b);};

struct C{void foo(int a, int b);};

struct D{int foo();};

struct E: public B{};

// available in C++17 onwards as part of <type_traits>
template<typename...>
using void_t = void;

template<typename T, typename = void> struct Has_foo: std::false_type{};

template<typename T> 
struct Has_foo<T, void_t<
    std::enable_if_t<
        std::is_same<
            int, 
            decltype(std::declval<T>().foo((int)0, (int)0))
        >::value
    >
>>: std::true_type{};


static_assert(not Has_foo<A>::value, "A does not have a foo");
static_assert(Has_foo<B>::value, "B has a foo");
static_assert(not Has_foo<C>::value, "C has a foo with the wrong return. ");
static_assert(not Has_foo<D>::value, "D has a foo with the wrong arguments. ");
static_assert(Has_foo<E>::value, "E has a foo since it inherits from B");

An example using SFINAE and template partial specialization, by writing a Has_foo concept check:

#include <type_traits>
struct A{};

struct B{ int foo(int a, int b);};

struct C{void foo(int a, int b);};

struct D{int foo();};

struct E: public B{};

// available in C++17 onwards as part of <type_traits>
template<typename...>
using void_t = void;

template<typename T, typename = void> struct Has_foo: std::false_type{};

template<typename T> 
struct Has_foo<T, void_t<
    std::enable_if_t<
        std::is_same<
            int, 
            decltype(std::declval<T>().foo((int)0, (int)0))
        >::value
    >
>>: std::true_type{};


static_assert(not Has_foo<A>::value, "A does not have a foo");
static_assert(Has_foo<B>::value, "B has a foo");
static_assert(not Has_foo<C>::value, "C has a foo with the wrong return. ");
static_assert(not Has_foo<D>::value, "D has a foo with the wrong arguments. ");
static_assert(Has_foo<E>::value, "E has a foo since it inherits from B");
给不了的爱 2024-07-14 22:26:57

MSVC 具有 __if_exists 和 __if_not_exists 关键字(Doc) 。 与 Nicola 的 typeof-SFINAE 方法一起,我可以像 OP 所寻找的那样创建对 GCC 和 MSVC 的检查。

更新:源代码可以在此处

MSVC has the __if_exists and __if_not_exists keywords (Doc). Together with the typeof-SFINAE approach of Nicola I could create a check for GCC and MSVC like the OP looked for.

Update: Source can be found Here

滥情空心 2024-07-14 22:26:57

我修改了 https://stackoverflow.com/a/264088/2712152 中提供的解决方案,使其更加通用。 此外,由于它不使用任何新的 C++11 功能,我们可以将它与旧编译器一起使用,并且还应该与 msvc 一起使用。 但编译器应该允许 C99 使用它,因为它使用可变宏。

以下宏可用于检查特定类是否具有特定的 typedef。

/** 
 * @class      : HAS_TYPEDEF
 * @brief      : This macro will be used to check if a class has a particular
 * typedef or not.
 * @param typedef_name : Name of Typedef
 * @param name  : Name of struct which is going to be run the test for
 * the given particular typedef specified in typedef_name
 */
#define HAS_TYPEDEF(typedef_name, name)                           \
   template <typename T>                                          \
   struct name {                                                  \
      typedef char yes[1];                                        \
      typedef char no[2];                                         \
      template <typename U>                                       \
      struct type_check;                                          \
      template <typename _1>                                      \
      static yes& chk(type_check<typename _1::typedef_name>*);    \
      template <typename>                                         \
      static no& chk(...);                                        \
      static bool const value = sizeof(chk<T>(0)) == sizeof(yes); \
   }

以下宏可用于检查特定类是否具有特定成员函数以及任何给定数量的参数。

/** 
 * @class      : HAS_MEM_FUNC
 * @brief      : This macro will be used to check if a class has a particular
 * member function implemented in the public section or not. 
 * @param func : Name of Member Function
 * @param name : Name of struct which is going to be run the test for
 * the given particular member function name specified in func
 * @param return_type: Return type of the member function
 * @param ellipsis(...) : Since this is macro should provide test case for every
 * possible member function we use variadic macros to cover all possibilities
 */
#define HAS_MEM_FUNC(func, name, return_type, ...)                \
   template <typename T>                                          \
   struct name {                                                  \
      typedef return_type (T::*Sign)(__VA_ARGS__);                \
      typedef char yes[1];                                        \
      typedef char no[2];                                         \
      template <typename U, U>                                    \
      struct type_check;                                          \
      template <typename _1>                                      \
      static yes& chk(type_check<Sign, &_1::func>*);              \
      template <typename>                                         \
      static no& chk(...);                                        \
      static bool const value = sizeof(chk<T>(0)) == sizeof(yes); \
   }

我们可以使用上面的 2 个宏来执行 has_typedef 和 has_mem_func 的检查,如下所示:

class A {
public:
  typedef int check;
  void check_function() {}
};

class B {
public:
  void hello(int a, double b) {}
  void hello() {}
};

HAS_MEM_FUNC(check_function, has_check_function, void, void);
HAS_MEM_FUNC(hello, hello_check, void, int, double);
HAS_MEM_FUNC(hello, hello_void_check, void, void);
HAS_TYPEDEF(check, has_typedef_check);

int main() {
  std::cout << "Check Function A:" << has_check_function<A>::value << std::endl;
  std::cout << "Check Function B:" << has_check_function<B>::value << std::endl;
  std::cout << "Hello Function A:" << hello_check<A>::value << std::endl;
  std::cout << "Hello Function B:" << hello_check<B>::value << std::endl;
  std::cout << "Hello void Function A:" << hello_void_check<A>::value << std::endl;
  std::cout << "Hello void Function B:" << hello_void_check<B>::value << std::endl;
  std::cout << "Check Typedef A:" << has_typedef_check<A>::value << std::endl;
  std::cout << "Check Typedef B:" << has_typedef_check<B>::value << std::endl;
}

I modified the solution provided in https://stackoverflow.com/a/264088/2712152 to make it a bit more general. Also since it doesn't use any of the new C++11 features we can use it with old compilers and should also work with msvc. But the compilers should enable C99 to use this since it uses variadic macros.

The following macro can be used to check if a particular class has a particular typedef or not.

/** 
 * @class      : HAS_TYPEDEF
 * @brief      : This macro will be used to check if a class has a particular
 * typedef or not.
 * @param typedef_name : Name of Typedef
 * @param name  : Name of struct which is going to be run the test for
 * the given particular typedef specified in typedef_name
 */
#define HAS_TYPEDEF(typedef_name, name)                           \
   template <typename T>                                          \
   struct name {                                                  \
      typedef char yes[1];                                        \
      typedef char no[2];                                         \
      template <typename U>                                       \
      struct type_check;                                          \
      template <typename _1>                                      \
      static yes& chk(type_check<typename _1::typedef_name>*);    \
      template <typename>                                         \
      static no& chk(...);                                        \
      static bool const value = sizeof(chk<T>(0)) == sizeof(yes); \
   }

The following macro can be used to check if a particular class has a particular member function or not with any given number of arguments.

/** 
 * @class      : HAS_MEM_FUNC
 * @brief      : This macro will be used to check if a class has a particular
 * member function implemented in the public section or not. 
 * @param func : Name of Member Function
 * @param name : Name of struct which is going to be run the test for
 * the given particular member function name specified in func
 * @param return_type: Return type of the member function
 * @param ellipsis(...) : Since this is macro should provide test case for every
 * possible member function we use variadic macros to cover all possibilities
 */
#define HAS_MEM_FUNC(func, name, return_type, ...)                \
   template <typename T>                                          \
   struct name {                                                  \
      typedef return_type (T::*Sign)(__VA_ARGS__);                \
      typedef char yes[1];                                        \
      typedef char no[2];                                         \
      template <typename U, U>                                    \
      struct type_check;                                          \
      template <typename _1>                                      \
      static yes& chk(type_check<Sign, &_1::func>*);              \
      template <typename>                                         \
      static no& chk(...);                                        \
      static bool const value = sizeof(chk<T>(0)) == sizeof(yes); \
   }

We can use the above 2 macros to perform the checks for has_typedef and has_mem_func as:

class A {
public:
  typedef int check;
  void check_function() {}
};

class B {
public:
  void hello(int a, double b) {}
  void hello() {}
};

HAS_MEM_FUNC(check_function, has_check_function, void, void);
HAS_MEM_FUNC(hello, hello_check, void, int, double);
HAS_MEM_FUNC(hello, hello_void_check, void, void);
HAS_TYPEDEF(check, has_typedef_check);

int main() {
  std::cout << "Check Function A:" << has_check_function<A>::value << std::endl;
  std::cout << "Check Function B:" << has_check_function<B>::value << std::endl;
  std::cout << "Hello Function A:" << hello_check<A>::value << std::endl;
  std::cout << "Hello Function B:" << hello_check<B>::value << std::endl;
  std::cout << "Hello void Function A:" << hello_void_check<A>::value << std::endl;
  std::cout << "Hello void Function B:" << hello_void_check<B>::value << std::endl;
  std::cout << "Check Typedef A:" << has_typedef_check<A>::value << std::endl;
  std::cout << "Check Typedef B:" << has_typedef_check<B>::value << std::endl;
}
枕梦 2024-07-14 22:26:57

我知道这个问题已经有很多年了,但我认为对于像我这样的人来说,拥有一个更完整的更新答案会很有用,该答案也适用于 const 重载方法,例如 std::vector>::开始

基于该答案从我的后续问题中回答,这里有一个更完整的答案。 请注意,这仅适用于 C++11 及更高版本。

#include <iostream>
#include <vector>

class EmptyClass{};

template <typename T>
class has_begin
{
    private:
    has_begin() = delete;
    
    struct one { char x[1]; };
    struct two { char x[2]; };

    template <typename C> static one test( decltype(void(std::declval<C &>().begin())) * ) ;
    template <typename C> static two test(...);    

public:
    static constexpr bool value = sizeof(test<T>(0)) == sizeof(one);
};
    
int main(int argc, char *argv[])
{
    std::cout << std::boolalpha;
    std::cout << "vector<int>::begin() exists: " << has_begin<std::vector<int>>::value << std::endl;
    std::cout << "EmptyClass::begin() exists: " << has_begin<EmptyClass>::value << std::endl;
    return 0;
}

或更短的版本:

#include <iostream>
#include <vector>

class EmptyClass{};

template <typename T, typename = void>
struct has_begin : std::false_type {};

template <typename T>
struct has_begin<T, decltype(void(std::declval<T &>().begin()))> : std::true_type {};

int main(int argc, char *argv[])
{
    std::cout << std::boolalpha;
    std::cout << "vector<int>::begin() exists: " << has_begin<std::vector<int>>::value << std::endl;
    std::cout << "EmptyClass exists: " << has_begin<EmptyClass>::value << std::endl;
}

请注意,此处必须提供完整的示例调用。 这意味着,如果我们测试 resize 方法是否存在,那么我们就会放置 resize(0)

深度魔术解释

这个问题的第一个答案使用了 test( decltype(&C::helloworld) ); 然而,当正在测试的方法由于 const 重载而不明确时,就会出现问题,从而导致替换尝试失败。

为了解决这个歧义,我们使用一个 void 语句,它可以接受任何参数,因为它总是被翻译成一个 noop ,因此歧义被消除,并且只要该方法存在,调用就有效:

has_begin<T, decltype(void(std::declval<T &>().begin()))>

这是发生的事情为了:
我们使用 std::declval() 创建一个可调用值,然后可以调用该值。 之后,begin 的值作为参数传递给 void 语句。 然后,我们使用内置的 decltype 检索该 void 表达式的类型,以便它可以用作模板类型参数。 如果 begin 不存在,则替换无效,并且根据 SFINAE,将使用其他声明。

I know that this question is years old, but I think it would useful for people like me to have a more complete updated answer that also works for const overloaded methods such as std::vector<>::begin.

Based on that answer and that answer from my follow up question, here's a more complete answer. Note that this will only work with C++11 and higher.

#include <iostream>
#include <vector>

class EmptyClass{};

template <typename T>
class has_begin
{
    private:
    has_begin() = delete;
    
    struct one { char x[1]; };
    struct two { char x[2]; };

    template <typename C> static one test( decltype(void(std::declval<C &>().begin())) * ) ;
    template <typename C> static two test(...);    

public:
    static constexpr bool value = sizeof(test<T>(0)) == sizeof(one);
};
    
int main(int argc, char *argv[])
{
    std::cout << std::boolalpha;
    std::cout << "vector<int>::begin() exists: " << has_begin<std::vector<int>>::value << std::endl;
    std::cout << "EmptyClass::begin() exists: " << has_begin<EmptyClass>::value << std::endl;
    return 0;
}

Or the shorter version:

#include <iostream>
#include <vector>

class EmptyClass{};

template <typename T, typename = void>
struct has_begin : std::false_type {};

template <typename T>
struct has_begin<T, decltype(void(std::declval<T &>().begin()))> : std::true_type {};

int main(int argc, char *argv[])
{
    std::cout << std::boolalpha;
    std::cout << "vector<int>::begin() exists: " << has_begin<std::vector<int>>::value << std::endl;
    std::cout << "EmptyClass exists: " << has_begin<EmptyClass>::value << std::endl;
}

Note that here a complete sample call must be provided. This means that if we tested for the resize method's existence then we would have put resize(0).

Deep magic explanation:

The first answer posted of this question used test( decltype(&C::helloworld) ); however this is problematic when the method it is testing is ambiguous due const overloading, thus making the substitution attempt fail.

To solve this ambiguity we use a void statement which can take any parameters because it is always translated into a noop and thus the ambiguity is nullified and the call is valid as long as the method exists:

has_begin<T, decltype(void(std::declval<T &>().begin()))>

Here's what's happening in order:
We use std::declval<T &>() to create a callable value for which begin can then be called. After that the value of begin is passed as a parameter to a void statement. We then retrieve the type of that void expression using the builtin decltype so that it can be used as a template type argument. If begin doesn't exist then the substitution is invalid and as per SFINAE the other declaration is used instead.

若相惜即相离 2024-07-14 22:26:57

奇怪的是,没有人提出我在这个网站上看到过的以下好技巧:

template <class T>
struct has_foo
{
    struct S { void foo(...); };
    struct derived : S, T {};

    template <typename V, V> struct W {};

    template <typename X>
    char (&test(W<void (X::*)(), &X::foo> *))[1];

    template <typename>
    char (&test(...))[2];

    static const bool value = sizeof(test<derived>(0)) == 1;
};

你必须确保 T 是一个类。 看起来 foo 查找中的歧义是替换失败。 我让它在 gcc 上工作,但不确定它是否是标准的。

Strange nobody suggested the following nice trick I saw once on this very site :

template <class T>
struct has_foo
{
    struct S { void foo(...); };
    struct derived : S, T {};

    template <typename V, V> struct W {};

    template <typename X>
    char (&test(W<void (X::*)(), &X::foo> *))[1];

    template <typename>
    char (&test(...))[2];

    static const bool value = sizeof(test<derived>(0)) == 1;
};

You have to make sure T is a class. It seems that ambiguity in the lookup of foo is a substitution failure. I made it work on gcc, not sure if it is standard though.

怪我入戏太深 2024-07-14 22:26:57

这个解决方案怎么样?

#include <type_traits>

template <typename U, typename = void> struct hasToString : std::false_type { };

template <typename U>
struct hasToString<U,
  typename std::enable_if<bool(sizeof(&U::toString))>::type
> : std::true_type { };

How about this solution?

#include <type_traits>

template <typename U, typename = void> struct hasToString : std::false_type { };

template <typename U>
struct hasToString<U,
  typename std::enable_if<bool(sizeof(&U::toString))>::type
> : std::true_type { };
玩套路吗 2024-07-14 22:26:57

可用于检查类型是否支持某些“功能”的通用模板:

#include <type_traits>

template <template <typename> class TypeChecker, typename Type>
struct is_supported
{
    // these structs are used to recognize which version
    // of the two functions was chosen during overload resolution
    struct supported {};
    struct not_supported {};

    // this overload of chk will be ignored by SFINAE principle
    // if TypeChecker<Type_> is invalid type
    template <typename Type_>
    static supported chk(typename std::decay<TypeChecker<Type_>>::type *);

    // ellipsis has the lowest conversion rank, so this overload will be
    // chosen during overload resolution only if the template overload above is ignored
    template <typename Type_>
    static not_supported chk(...);

    // if the template overload of chk is chosen during
    // overload resolution then the feature is supported
    // if the ellipses overload is chosen the the feature is not supported
    static constexpr bool value = std::is_same<decltype(chk<Type>(nullptr)),supported>::value;
};

检查是否存在与签名 double(const char* 兼容) 的方法 foo 的模板)

// if T doesn't have foo method with the signature that allows to compile the bellow
// expression then instantiating this template is Substitution Failure (SF)
// which Is Not An Error (INAE) if this happens during overload resolution
template <typename T>
using has_foo = decltype(double(std::declval<T>().foo(std::declval<const char*>())));

示例

// types that support has_foo
struct struct1 { double foo(const char*); };            // exact signature match
struct struct2 { int    foo(const std::string &str); }; // compatible signature
struct struct3 { float  foo(...); };                    // compatible ellipsis signature
struct struct4 { template <typename T>
                 int    foo(T t); };                    // compatible template signature

// types that do not support has_foo
struct struct5 { void        foo(const char*); }; // returns void
struct struct6 { std::string foo(const char*); }; // std::string can't be converted to double
struct struct7 { double      foo(      int *); }; // const char* can't be converted to int*
struct struct8 { double      bar(const char*); }; // there is no foo method

int main()
{
    std::cout << std::boolalpha;

    std::cout << is_supported<has_foo, int    >::value << std::endl; // false
    std::cout << is_supported<has_foo, double >::value << std::endl; // false

    std::cout << is_supported<has_foo, struct1>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct2>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct3>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct4>::value << std::endl; // true

    std::cout << is_supported<has_foo, struct5>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct6>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct7>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct8>::value << std::endl; // false

    return 0;
}

http://coliru.stacked-crooked.com/a/83c6a631ed42cea4

The generic template that can be used for checking if some "feature" is supported by the type:

#include <type_traits>

template <template <typename> class TypeChecker, typename Type>
struct is_supported
{
    // these structs are used to recognize which version
    // of the two functions was chosen during overload resolution
    struct supported {};
    struct not_supported {};

    // this overload of chk will be ignored by SFINAE principle
    // if TypeChecker<Type_> is invalid type
    template <typename Type_>
    static supported chk(typename std::decay<TypeChecker<Type_>>::type *);

    // ellipsis has the lowest conversion rank, so this overload will be
    // chosen during overload resolution only if the template overload above is ignored
    template <typename Type_>
    static not_supported chk(...);

    // if the template overload of chk is chosen during
    // overload resolution then the feature is supported
    // if the ellipses overload is chosen the the feature is not supported
    static constexpr bool value = std::is_same<decltype(chk<Type>(nullptr)),supported>::value;
};

The template that checks whether there is a method foo that is compatible with signature double(const char*)

// if T doesn't have foo method with the signature that allows to compile the bellow
// expression then instantiating this template is Substitution Failure (SF)
// which Is Not An Error (INAE) if this happens during overload resolution
template <typename T>
using has_foo = decltype(double(std::declval<T>().foo(std::declval<const char*>())));

Examples

// types that support has_foo
struct struct1 { double foo(const char*); };            // exact signature match
struct struct2 { int    foo(const std::string &str); }; // compatible signature
struct struct3 { float  foo(...); };                    // compatible ellipsis signature
struct struct4 { template <typename T>
                 int    foo(T t); };                    // compatible template signature

// types that do not support has_foo
struct struct5 { void        foo(const char*); }; // returns void
struct struct6 { std::string foo(const char*); }; // std::string can't be converted to double
struct struct7 { double      foo(      int *); }; // const char* can't be converted to int*
struct struct8 { double      bar(const char*); }; // there is no foo method

int main()
{
    std::cout << std::boolalpha;

    std::cout << is_supported<has_foo, int    >::value << std::endl; // false
    std::cout << is_supported<has_foo, double >::value << std::endl; // false

    std::cout << is_supported<has_foo, struct1>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct2>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct3>::value << std::endl; // true
    std::cout << is_supported<has_foo, struct4>::value << std::endl; // true

    std::cout << is_supported<has_foo, struct5>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct6>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct7>::value << std::endl; // false
    std::cout << is_supported<has_foo, struct8>::value << std::endl; // false

    return 0;
}

http://coliru.stacked-crooked.com/a/83c6a631ed42cea4

怀里藏娇 2024-07-14 22:26:57

我的看法:普遍确定某事物是否可调用,而无需为每个事物创建详细的类型特征,或者使用实验性功能或长代码:

template<typename Callable, typename... Args, typename = decltype(declval<Callable>()(declval<Args>()...))>
std::true_type isCallableImpl(Callable, Args...) { return {}; }

std::false_type isCallableImpl(...) { return {}; }

template<typename... Args, typename Callable>
constexpr bool isCallable(Callable callable) {
    return decltype(isCallableImpl(callable, declval<Args>()...)){};
}

用法:

constexpr auto TO_STRING_TEST = [](auto in) -> decltype(in.toString()) { return {}; };
constexpr bool TO_STRING_WORKS = isCallable<T>(TO_STRING_TEST);

My take: to universally determine if something is callable without making verbose type traits for each and every one, or using experimental features, or long code:

template<typename Callable, typename... Args, typename = decltype(declval<Callable>()(declval<Args>()...))>
std::true_type isCallableImpl(Callable, Args...) { return {}; }

std::false_type isCallableImpl(...) { return {}; }

template<typename... Args, typename Callable>
constexpr bool isCallable(Callable callable) {
    return decltype(isCallableImpl(callable, declval<Args>()...)){};
}

Usage:

constexpr auto TO_STRING_TEST = [](auto in) -> decltype(in.toString()) { return {}; };
constexpr bool TO_STRING_WORKS = isCallable<T>(TO_STRING_TEST);
久伴你 2024-07-14 22:26:57

这里有很多答案,但我未能找到一个执行真实方法解析排序的版本,同时不使用任何较新的 c++ 功能(仅使用 c++98 功能)。
注意:这个版本已经过测试,可以与 vc++2013、g++ 5.2.0 和在线编译器一起使用。

所以我想出了一个仅使用 sizeof() 的版本:

template<typename T> T declval(void);

struct fake_void { };
template<typename T> T &operator,(T &,fake_void);
template<typename T> T const &operator,(T const &,fake_void);
template<typename T> T volatile &operator,(T volatile &,fake_void);
template<typename T> T const volatile &operator,(T const volatile &,fake_void);

struct yes { char v[1]; };
struct no  { char v[2]; };
template<bool> struct yes_no:yes{};
template<> struct yes_no<false>:no{};

template<typename T>
struct has_awesome_member {
 template<typename U> static yes_no<(sizeof((
   declval<U>().awesome_member(),fake_void()
  ))!=0)> check(int);
 template<typename> static no check(...);
 enum{value=sizeof(check<T>(0)) == sizeof(yes)};
};


struct foo { int awesome_member(void); };
struct bar { };
struct foo_void { void awesome_member(void); };
struct wrong_params { void awesome_member(int); };

static_assert(has_awesome_member<foo>::value,"");
static_assert(!has_awesome_member<bar>::value,"");
static_assert(has_awesome_member<foo_void>::value,"");
static_assert(!has_awesome_member<wrong_params>::value,"");

现场演示(具有扩展的返回类型检查和vc++2010 解决方法): http://cpp.sh/5b2vs

没有来源,因为我想出了我自己。

在 g++ 编译器上运行 Live demo 时,请注意允许数组大小为 0,这意味着使用的 static_assert 即使失败也不会触发编译器错误。
常用的解决方法是将宏中的“typedef”替换为“extern”。

There are a lot of answers here, but I failed, to find a version, that performs real method resolution ordering, while not using any of the newer c++ features (only using c++98 features).
Note: This version is tested and working with vc++2013, g++ 5.2.0 and the onlline compiler.

So I came up with a version, that only uses sizeof():

template<typename T> T declval(void);

struct fake_void { };
template<typename T> T &operator,(T &,fake_void);
template<typename T> T const &operator,(T const &,fake_void);
template<typename T> T volatile &operator,(T volatile &,fake_void);
template<typename T> T const volatile &operator,(T const volatile &,fake_void);

struct yes { char v[1]; };
struct no  { char v[2]; };
template<bool> struct yes_no:yes{};
template<> struct yes_no<false>:no{};

template<typename T>
struct has_awesome_member {
 template<typename U> static yes_no<(sizeof((
   declval<U>().awesome_member(),fake_void()
  ))!=0)> check(int);
 template<typename> static no check(...);
 enum{value=sizeof(check<T>(0)) == sizeof(yes)};
};


struct foo { int awesome_member(void); };
struct bar { };
struct foo_void { void awesome_member(void); };
struct wrong_params { void awesome_member(int); };

static_assert(has_awesome_member<foo>::value,"");
static_assert(!has_awesome_member<bar>::value,"");
static_assert(has_awesome_member<foo_void>::value,"");
static_assert(!has_awesome_member<wrong_params>::value,"");

Live demo (with extended return type checking and vc++2010 workaround): http://cpp.sh/5b2vs

No source, as I came up with it myself.

When running the Live demo on the g++ compiler, please note that array sizes of 0 are allowed, meaning that the static_assert used will not trigger a compiler error, even when it fails.
A commonly used work-around is to replace the 'typedef' in the macro with 'extern'.

乖乖哒 2024-07-14 22:26:57

这是我的版本,它处理任意数量的所有可能的成员函数重载,包括模板成员函数,可能带有默认参数。 当使用给定的 arg 类型对某些类类型进行成员函数调用时,它区分 3 种互斥的情况:(1) 有效,或 (2) 不明确,或 (3) 不可行。 示例用法:

#include <string>
#include <vector>

HAS_MEM(bar)
HAS_MEM_FUN_CALL(bar)

struct test
{
   void bar(int);
   void bar(double);
   void bar(int,double);

   template < typename T >
   typename std::enable_if< not std::is_integral<T>::value >::type
   bar(const T&, int=0){}

   template < typename T >
   typename std::enable_if< std::is_integral<T>::value >::type
   bar(const std::vector<T>&, T*){}

   template < typename T >
   int bar(const std::string&, int){}
};

现在您可以像这样使用它:

int main(int argc, const char * argv[])
{
   static_assert( has_mem_bar<test>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(char const*,long)>::value , "");
   static_assert( has_valid_mem_fun_call_bar<test(std::string&,long)>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(std::vector<int>, int*)>::value , "");
   static_assert( has_no_viable_mem_fun_call_bar<test(std::vector<double>, double*)>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(int)>::value , "");
   static_assert( std::is_same<void,result_of_mem_fun_call_bar<test(int)>::type>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(int,double)>::value , "");
   static_assert( not has_valid_mem_fun_call_bar<test(int,double,int)>::value , "");

   static_assert( not has_ambiguous_mem_fun_call_bar<test(double)>::value , "");
   static_assert( has_ambiguous_mem_fun_call_bar<test(unsigned)>::value , "");

   static_assert( has_viable_mem_fun_call_bar<test(unsigned)>::value , "");
   static_assert( has_viable_mem_fun_call_bar<test(int)>::value , "");

   static_assert( has_no_viable_mem_fun_call_bar<test(void)>::value , "");

   return 0;
}

这是用 c++11 编写的代码,但是,您可以轻松地将其(只需稍作调整)移植到具有 typeof 扩展(例如 gcc)的非 c++11 。 您可以将 HAS_MEM 宏替换为您自己的宏。

#pragma once

#if __cplusplus >= 201103

#include <utility>
#include <type_traits>

#define HAS_MEM(mem)                                                                                     \
                                                                                                     \
template < typename T >                                                                               \
struct has_mem_##mem                                                                                  \
{                                                                                                     \
  struct yes {};                                                                                     \
  struct no  {};                                                                                     \
                                                                                                     \
  struct ambiguate_seed { char mem; };                                                               \
  template < typename U > struct ambiguate : U, ambiguate_seed {};                                   \
                                                                                                     \
  template < typename U, typename = decltype(&U::mem) > static constexpr no  test(int);              \
  template < typename                                 > static constexpr yes test(...);              \
                                                                                                     \
  static bool constexpr value = std::is_same<decltype(test< ambiguate<T> >(0)),yes>::value ;         \
  typedef std::integral_constant<bool,value>    type;                                                \
};


#define HAS_MEM_FUN_CALL(memfun)                                                                         \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_valid_mem_fun_call_##memfun;                                                               \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_valid_mem_fun_call_##memfun< T(Args...) >                                                  \
{                                                                                                     \
  struct yes {};                                                                                     \
  struct no  {};                                                                                     \
                                                                                                     \
  template < typename U, bool = has_mem_##memfun<U>::value >                                         \
  struct impl                                                                                        \
  {                                                                                                  \
     template < typename V, typename = decltype(std::declval<V>().memfun(std::declval<Args>()...)) > \
     struct test_result { using type = yes; };                                                       \
                                                                                                     \
     template < typename V > static constexpr typename test_result<V>::type test(int);               \
     template < typename   > static constexpr                            no test(...);               \
                                                                                                     \
     static constexpr bool value = std::is_same<decltype(test<U>(0)),yes>::value;                    \
     using type = std::integral_constant<bool, value>;                                               \
  };                                                                                                 \
                                                                                                     \
  template < typename U >                                                                            \
  struct impl<U,false> : std::false_type {};                                                         \
                                                                                                     \
  static constexpr bool value = impl<T>::value;                                                      \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_ambiguous_mem_fun_call_##memfun;                                                           \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_ambiguous_mem_fun_call_##memfun< T(Args...) >                                              \
{                                                                                                     \
  struct ambiguate_seed { void memfun(...); };                                                       \
                                                                                                     \
  template < class U, bool = has_mem_##memfun<U>::value >                                            \
  struct ambiguate : U, ambiguate_seed                                                               \
  {                                                                                                  \
    using ambiguate_seed::memfun;                                                                    \
    using U::memfun;                                                                                 \
  };                                                                                                 \
                                                                                                     \
  template < class U >                                                                               \
  struct ambiguate<U,false> : ambiguate_seed {};                                                     \
                                                                                                     \
  static constexpr bool value = not has_valid_mem_fun_call_##memfun< ambiguate<T>(Args...) >::value; \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_viable_mem_fun_call_##memfun;                                                              \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_viable_mem_fun_call_##memfun< T(Args...) >                                                 \
{                                                                                                     \
  static constexpr bool value = has_valid_mem_fun_call_##memfun<T(Args...)>::value                   \
                             or has_ambiguous_mem_fun_call_##memfun<T(Args...)>::value;              \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_no_viable_mem_fun_call_##memfun;                                                           \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_no_viable_mem_fun_call_##memfun < T(Args...) >                                             \
{                                                                                                     \
  static constexpr bool value = not has_viable_mem_fun_call_##memfun<T(Args...)>::value;             \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct result_of_mem_fun_call_##memfun;                                                               \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct result_of_mem_fun_call_##memfun< T(Args...) >                                                  \
{                                                                                                     \
  using type = decltype(std::declval<T>().memfun(std::declval<Args>()...));                          \
};

#endif

Here is my version that handles all possible member function overloads with arbitrary arity, including template member functions, possibly with default arguments. It distinguishes 3 mutually exclusive scenarios when making a member function call to some class type, with given arg types: (1) valid, or (2) ambiguous, or (3) non-viable. Example usage:

#include <string>
#include <vector>

HAS_MEM(bar)
HAS_MEM_FUN_CALL(bar)

struct test
{
   void bar(int);
   void bar(double);
   void bar(int,double);

   template < typename T >
   typename std::enable_if< not std::is_integral<T>::value >::type
   bar(const T&, int=0){}

   template < typename T >
   typename std::enable_if< std::is_integral<T>::value >::type
   bar(const std::vector<T>&, T*){}

   template < typename T >
   int bar(const std::string&, int){}
};

Now you can use it like this:

int main(int argc, const char * argv[])
{
   static_assert( has_mem_bar<test>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(char const*,long)>::value , "");
   static_assert( has_valid_mem_fun_call_bar<test(std::string&,long)>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(std::vector<int>, int*)>::value , "");
   static_assert( has_no_viable_mem_fun_call_bar<test(std::vector<double>, double*)>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(int)>::value , "");
   static_assert( std::is_same<void,result_of_mem_fun_call_bar<test(int)>::type>::value , "");

   static_assert( has_valid_mem_fun_call_bar<test(int,double)>::value , "");
   static_assert( not has_valid_mem_fun_call_bar<test(int,double,int)>::value , "");

   static_assert( not has_ambiguous_mem_fun_call_bar<test(double)>::value , "");
   static_assert( has_ambiguous_mem_fun_call_bar<test(unsigned)>::value , "");

   static_assert( has_viable_mem_fun_call_bar<test(unsigned)>::value , "");
   static_assert( has_viable_mem_fun_call_bar<test(int)>::value , "");

   static_assert( has_no_viable_mem_fun_call_bar<test(void)>::value , "");

   return 0;
}

Here is the code, written in c++11, however, you can easily port it (with minor tweaks) to non-c++11 that has typeof extensions (e.g. gcc). You can replace the HAS_MEM macro with your own.

#pragma once

#if __cplusplus >= 201103

#include <utility>
#include <type_traits>

#define HAS_MEM(mem)                                                                                     \
                                                                                                     \
template < typename T >                                                                               \
struct has_mem_##mem                                                                                  \
{                                                                                                     \
  struct yes {};                                                                                     \
  struct no  {};                                                                                     \
                                                                                                     \
  struct ambiguate_seed { char mem; };                                                               \
  template < typename U > struct ambiguate : U, ambiguate_seed {};                                   \
                                                                                                     \
  template < typename U, typename = decltype(&U::mem) > static constexpr no  test(int);              \
  template < typename                                 > static constexpr yes test(...);              \
                                                                                                     \
  static bool constexpr value = std::is_same<decltype(test< ambiguate<T> >(0)),yes>::value ;         \
  typedef std::integral_constant<bool,value>    type;                                                \
};


#define HAS_MEM_FUN_CALL(memfun)                                                                         \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_valid_mem_fun_call_##memfun;                                                               \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_valid_mem_fun_call_##memfun< T(Args...) >                                                  \
{                                                                                                     \
  struct yes {};                                                                                     \
  struct no  {};                                                                                     \
                                                                                                     \
  template < typename U, bool = has_mem_##memfun<U>::value >                                         \
  struct impl                                                                                        \
  {                                                                                                  \
     template < typename V, typename = decltype(std::declval<V>().memfun(std::declval<Args>()...)) > \
     struct test_result { using type = yes; };                                                       \
                                                                                                     \
     template < typename V > static constexpr typename test_result<V>::type test(int);               \
     template < typename   > static constexpr                            no test(...);               \
                                                                                                     \
     static constexpr bool value = std::is_same<decltype(test<U>(0)),yes>::value;                    \
     using type = std::integral_constant<bool, value>;                                               \
  };                                                                                                 \
                                                                                                     \
  template < typename U >                                                                            \
  struct impl<U,false> : std::false_type {};                                                         \
                                                                                                     \
  static constexpr bool value = impl<T>::value;                                                      \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_ambiguous_mem_fun_call_##memfun;                                                           \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_ambiguous_mem_fun_call_##memfun< T(Args...) >                                              \
{                                                                                                     \
  struct ambiguate_seed { void memfun(...); };                                                       \
                                                                                                     \
  template < class U, bool = has_mem_##memfun<U>::value >                                            \
  struct ambiguate : U, ambiguate_seed                                                               \
  {                                                                                                  \
    using ambiguate_seed::memfun;                                                                    \
    using U::memfun;                                                                                 \
  };                                                                                                 \
                                                                                                     \
  template < class U >                                                                               \
  struct ambiguate<U,false> : ambiguate_seed {};                                                     \
                                                                                                     \
  static constexpr bool value = not has_valid_mem_fun_call_##memfun< ambiguate<T>(Args...) >::value; \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_viable_mem_fun_call_##memfun;                                                              \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_viable_mem_fun_call_##memfun< T(Args...) >                                                 \
{                                                                                                     \
  static constexpr bool value = has_valid_mem_fun_call_##memfun<T(Args...)>::value                   \
                             or has_ambiguous_mem_fun_call_##memfun<T(Args...)>::value;              \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct has_no_viable_mem_fun_call_##memfun;                                                           \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct has_no_viable_mem_fun_call_##memfun < T(Args...) >                                             \
{                                                                                                     \
  static constexpr bool value = not has_viable_mem_fun_call_##memfun<T(Args...)>::value;             \
  using type = std::integral_constant<bool, value>;                                                  \
};                                                                                                    \
                                                                                                     \
template < typename Signature >                                                                       \
struct result_of_mem_fun_call_##memfun;                                                               \
                                                                                                     \
template < typename T, typename... Args >                                                             \
struct result_of_mem_fun_call_##memfun< T(Args...) >                                                  \
{                                                                                                     \
  using type = decltype(std::declval<T>().memfun(std::declval<Args>()...));                          \
};

#endif

疾风者 2024-07-14 22:26:57

您可以跳过 C++14 中的所有元编程,只需使用 fit::conditional 来自 Fit 库:

template<class T>
std::string optionalToString(T* x)
{
    return fit::conditional(
        [](auto* obj) -> decltype(obj->toString()) { return obj->toString(); },
        [](auto*) { return "toString not defined"; }
    )(x);
}

您也可以直接从 lambda 创建函数:

FIT_STATIC_LAMBDA_FUNCTION(optionalToString) = fit::conditional(
    [](auto* obj) -> decltype(obj->toString(), std::string()) { return obj->toString(); },
    [](auto*) -> std::string { return "toString not defined"; }
);

但是,如果您使用的编译器不支持泛型 lambda,则必须编写单独的函数对象:

struct withToString
{
    template<class T>
    auto operator()(T* obj) const -> decltype(obj->toString(), std::string())
    {
        return obj->toString();
    }
};

struct withoutToString
{
    template<class T>
    std::string operator()(T*) const
    {
        return "toString not defined";
    }
};

FIT_STATIC_FUNCTION(optionalToString) = fit::conditional(
    withToString(),
    withoutToString()
);

You can skip all the metaprogramming in C++14, and just write this using fit::conditional from the Fit library:

template<class T>
std::string optionalToString(T* x)
{
    return fit::conditional(
        [](auto* obj) -> decltype(obj->toString()) { return obj->toString(); },
        [](auto*) { return "toString not defined"; }
    )(x);
}

You can also create the function directly from the lambdas as well:

FIT_STATIC_LAMBDA_FUNCTION(optionalToString) = fit::conditional(
    [](auto* obj) -> decltype(obj->toString(), std::string()) { return obj->toString(); },
    [](auto*) -> std::string { return "toString not defined"; }
);

However, if you are using a compiler that doesn't support generic lambdas, you will have to write separate function objects:

struct withToString
{
    template<class T>
    auto operator()(T* obj) const -> decltype(obj->toString(), std::string())
    {
        return obj->toString();
    }
};

struct withoutToString
{
    template<class T>
    std::string operator()(T*) const
    {
        return "toString not defined";
    }
};

FIT_STATIC_FUNCTION(optionalToString) = fit::conditional(
    withToString(),
    withoutToString()
);
空城仅有旧梦在 2024-07-14 22:26:57

可能不如其他示例好,但这就是我为 C++11 想到的。 这适用于选择重载方法。

template <typename... Args>
struct Pack {};

#define Proxy(T) ((T &)(*(int *)(nullptr)))

template <typename Class, typename ArgPack, typename = nullptr_t>
struct HasFoo
{
    enum { value = false };
};

template <typename Class, typename... Args>
struct HasFoo<
    Class,
    Pack<Args...>,
    decltype((void)(Proxy(Class).foo(Proxy(Args)...)), nullptr)>
{
    enum { value = true };
};

用法示例

struct Object
{
    int foo(int n)         { return n; }
#if SOME_CONDITION
    int foo(int n, char c) { return n + c; }
#endif
};

template <bool has_foo_int_char>
struct Dispatcher;

template <>
struct Dispatcher<false>
{
    template <typename Object>
    static int exec(Object &object, int n, char c)
    {
        return object.foo(n) + c;
    }
};

template <>
struct Dispatcher<true>
{
    template <typename Object>
    static int exec(Object &object, int n, char c)
    {
        return object.foo(n, c);
    }
};

int runExample()
{
    using Args = Pack<int, char>;
    enum { has_overload = HasFoo<Object, Args>::value };
    Object object;
    return Dispatcher<has_overload>::exec(object, 100, 'a');
}

Probably not as good as other examples, but this is what I came up with for C++11. This works for picking overloaded methods.

template <typename... Args>
struct Pack {};

#define Proxy(T) ((T &)(*(int *)(nullptr)))

template <typename Class, typename ArgPack, typename = nullptr_t>
struct HasFoo
{
    enum { value = false };
};

template <typename Class, typename... Args>
struct HasFoo<
    Class,
    Pack<Args...>,
    decltype((void)(Proxy(Class).foo(Proxy(Args)...)), nullptr)>
{
    enum { value = true };
};

Example usage

struct Object
{
    int foo(int n)         { return n; }
#if SOME_CONDITION
    int foo(int n, char c) { return n + c; }
#endif
};

template <bool has_foo_int_char>
struct Dispatcher;

template <>
struct Dispatcher<false>
{
    template <typename Object>
    static int exec(Object &object, int n, char c)
    {
        return object.foo(n) + c;
    }
};

template <>
struct Dispatcher<true>
{
    template <typename Object>
    static int exec(Object &object, int n, char c)
    {
        return object.foo(n, c);
    }
};

int runExample()
{
    using Args = Pack<int, char>;
    enum { has_overload = HasFoo<Object, Args>::value };
    Object object;
    return Dispatcher<has_overload>::exec(object, 100, 'a');
}

C++03方式

#define HasMember(NAME) \
  template<class Class, typename Type = void> \
  struct HasMember_##NAME \
  { \
    typedef char (&yes)[2]; \
    template<unsigned long> struct exists; \
    template<typename V> static yes Check (exists<sizeof(static_cast<Type>(&V::NAME))>*); \
    template<typename> static char Check (...); \
    static const bool value = (sizeof(Check<Class>(0)) == sizeof(yes)); \
  }; \
  template<class Class> \
  struct HasMember_##NAME<Class, void> \
  { \
    typedef char (&yes)[2]; \
    template<unsigned long> struct exists; \
    template<typename V> static yes Check (exists<sizeof(&V::NAME)>*); \
    template<typename> static char Check (...); \
    static const bool value = (sizeof(Check<Class>(0)) == sizeof(yes)); \
  }

使用上面的宏,你可以找到类中任何成员的存在,无论是变量还是方法。 如果有两个同名的方法,那么我们还必须提供方法的类型。

用法

#include<iostream>
struct S
{
  void Foo () const {}
//  void Foo () {}  // If uncommented then, SFINAE fails      
  int i;
};

HasMember(Foo);
HasMember(i);

int main ()
{
  std::cout << HasMember_Foo<S, void (S::*) () const>::value << "\n";
  std::cout << HasMember_Foo<S>::value << "\n";
  std::cout << HasMember_i<S, int (S::*)>::value << "\n";
  std::cout << HasMember_i<S>::value << "\n";
}

如果 S 中存在 2 个具有相同名称 Foo 的方法,则第二个 cout 可能会打印 0。 对于成员变量,类型(如第 3 个 cout 中所述)是多余的,因为变量名称只能为 1。但是,要检查特定类型,它很有用(对于方法和变量)。

C++03 way

#define HasMember(NAME) \
  template<class Class, typename Type = void> \
  struct HasMember_##NAME \
  { \
    typedef char (&yes)[2]; \
    template<unsigned long> struct exists; \
    template<typename V> static yes Check (exists<sizeof(static_cast<Type>(&V::NAME))>*); \
    template<typename> static char Check (...); \
    static const bool value = (sizeof(Check<Class>(0)) == sizeof(yes)); \
  }; \
  template<class Class> \
  struct HasMember_##NAME<Class, void> \
  { \
    typedef char (&yes)[2]; \
    template<unsigned long> struct exists; \
    template<typename V> static yes Check (exists<sizeof(&V::NAME)>*); \
    template<typename> static char Check (...); \
    static const bool value = (sizeof(Check<Class>(0)) == sizeof(yes)); \
  }

Using above macro, you can find any member's existence in a class, be it variable or method. If there are 2 methods with same name, then we also have to provide the type of the method.

Usage:

#include<iostream>
struct S
{
  void Foo () const {}
//  void Foo () {}  // If uncommented then, SFINAE fails      
  int i;
};

HasMember(Foo);
HasMember(i);

int main ()
{
  std::cout << HasMember_Foo<S, void (S::*) () const>::value << "\n";
  std::cout << HasMember_Foo<S>::value << "\n";
  std::cout << HasMember_i<S, int (S::*)>::value << "\n";
  std::cout << HasMember_i<S>::value << "\n";
}

The 2nd cout may print 0 if there are 2 methods with same name Foo present in S. In case of member variable, the type (as mentioned in 3rd cout) is redundant as the variable name can be only 1. However to check the specific type, it's useful (for both method and variable).

娇纵 2024-07-14 22:26:57

这是工作代码的示例。

template<typename T>
using toStringFn = decltype(std::declval<const T>().toString());

template <class T, toStringFn<T>* = nullptr>
std::string optionalToString(const T* obj, int)
{
    return obj->toString();
}

template <class T>
std::string optionalToString(const T* obj, long)
{
    return "toString not defined";
}

int main()
{
    A* a;
    B* b;

    std::cout << optionalToString(a, 0) << std::endl; // This is A
    std::cout << optionalToString(b, 0) << std::endl; // toString not defined
}

toStringFn* = nullptr 将启用需要额外 int 参数的函数,该函数的优先级高于使用 long 调用时需要 long 的函数代码>0。

如果函数被实现,您可以对返回 true 的函数使用相同的原则。

template <typename T>
constexpr bool toStringExists(long)
{
    return false;
}

template <typename T, toStringFn<T>* = nullptr>
constexpr bool toStringExists(int)
{
    return true;
}


int main()
{
    A* a;
    B* b;

    std::cout << toStringExists<A>(0) << std::endl; // true
    std::cout << toStringExists<B>(0) << std::endl; // false
}

Here is an example of the working code.

template<typename T>
using toStringFn = decltype(std::declval<const T>().toString());

template <class T, toStringFn<T>* = nullptr>
std::string optionalToString(const T* obj, int)
{
    return obj->toString();
}

template <class T>
std::string optionalToString(const T* obj, long)
{
    return "toString not defined";
}

int main()
{
    A* a;
    B* b;

    std::cout << optionalToString(a, 0) << std::endl; // This is A
    std::cout << optionalToString(b, 0) << std::endl; // toString not defined
}

toStringFn<T>* = nullptr will enable the function which takes extra int argument which has a priority over function which takes long when called with 0.

You can use the same principle for the functions which returns true if function is implemented.

template <typename T>
constexpr bool toStringExists(long)
{
    return false;
}

template <typename T, toStringFn<T>* = nullptr>
constexpr bool toStringExists(int)
{
    return true;
}


int main()
{
    A* a;
    B* b;

    std::cout << toStringExists<A>(0) << std::endl; // true
    std::cout << toStringExists<B>(0) << std::endl; // false
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文