Environment.TickCount 与 DateTime.Now
是否可以使用 Environment.TickCount 来计算时间跨度?
int start = Environment.TickCount;
// Do stuff
int duration = Environment.TickCount - start;
Console.WriteLine("That took " + duration " ms");
因为 TickCount
已签名,并将在 25 天后滚动(需要 50 天才能达到所有 32 位,但如果您想了解数学意义,则必须废弃有符号位),看起来就像它风险太大而没有用处一样。
我正在使用 DateTime.Now
代替。 这是最好的方法吗?
DateTime start = DateTime.Now;
// Do stuff
TimeSpan duration = DateTime.Now - start;
Console.WriteLine("That took " + duration.TotalMilliseconds + " ms");
Is it ever OK to use Environment.TickCount to calculate time spans?
int start = Environment.TickCount;
// Do stuff
int duration = Environment.TickCount - start;
Console.WriteLine("That took " + duration " ms");
Because TickCount
is signed and will rollover after 25 days (it takes 50 days to hit all 32 bits, but you have to scrap the signed bit if you want to make any sense of the math), it seems like it's too risky to be useful.
I'm using DateTime.Now
instead. Is this the best way to do this?
DateTime start = DateTime.Now;
// Do stuff
TimeSpan duration = DateTime.Now - start;
Console.WriteLine("That took " + duration.TotalMilliseconds + " ms");
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(14)
Environment.TickCount 基于 GetTickCount() WinAPI 函数。 以毫秒为单位。
但其实际精度约为15.6 ms。 所以你不能测量更短的时间间隔(否则你会得到 0)。
注意:返回值为 Int32,因此该计数器每约 49.7 天滚动一次。 您不应该用它来测量这么长的间隔。
DateTime.Ticks 基于 GetSystemTimeAsFileTime ()WinAPI 函数。 它以 100 纳秒(十分之一微秒)为单位。
DateTime.Ticks 的实际精度取决于系统。 在Windows XP上,系统时钟的增量约为15.6 ms,与Environment.TickCount中相同。
在 Windows 7 上,其精度为 1 毫秒(而 Environemnt.TickCount 的精度仍为 15.6 毫秒)。 然而,如果使用省电方案(通常在笔记本电脑上),它也可以降至 15.6 毫秒。
秒表基于QueryPerformanceCounter() WinAPI 函数(但如果您的系统不支持高分辨率性能计数器,则使用 DateTime.Ticks)
在使用 StopWatch 之前请注意两个问题:
您可以通过简单的测试来评估系统的精度:
Environment.TickCount is based on GetTickCount() WinAPI function. It's in milliseconds.
But the actual precision of it is about 15.6 ms. So you can't measure shorter time intervals (or you'll get 0).
Note: The returned value is Int32, so this counter rolls over each ~49.7 days. You shouldn't use it to measure such long intervals.
DateTime.Ticks is based on GetSystemTimeAsFileTime() WinAPI function. It's in 100s nanoseconds (tenths of microsoconds).
The actual precision of DateTime.Ticks depends on the system. On Windows XP, the increment of system clock is about 15.6 ms, the same as in Environment.TickCount.
On Windows 7 its precision is 1 ms (while Environemnt.TickCount's is still 15.6 ms). However, if a power saving scheme is used (usually on laptops) it can go down to 15.6 ms as well.
Stopwatch is based on QueryPerformanceCounter() WinAPI function (but if high-resolution performance counter is not supported by your system, DateTime.Ticks is used)
Before using StopWatch notice two problems:
You can evaluate the precision on your system with simple test:
使用秒表类。 MSDN 上有一个不错的示例:秒表类
Use the Stopwatch class. There is a decent example on MSDN: Stopwatch Class
为什么担心翻车? 只要您测量的持续时间低于 24.9 天,并且您计算了相对持续时间,就可以了。 系统运行了多长时间并不重要,只要您只关心自己的运行时间部分(而不是直接在开始点和结束点上执行小于或大于比较)。 即:
正确打印:
您不必担心符号位。 C# 与 C 一样,让 CPU 处理这个问题。
这是我之前在嵌入式系统中进行时间计数时遇到过的常见情况。 我永远不会比较 beforerollover < 例如,直接在翻转后。 我总是会执行减法来找到考虑了展期的持续时间,然后根据持续时间进行任何其他计算。
Why are you worried about rollover? As long as the duration you are measuring is under 24.9 days and you calculate the relative duration, you're fine. It doesn't matter how long the system has been running, as long as you only concern yourself with your portion of that running time (as opposed to directly performing less-than or greater-than comparisons on the begin and end points). I.e. this:
correctly prints:
You don't have to worry about the sign bit. C#, like C, lets the CPU handle this.
This is a common situation I've run into before with time counts in embedded systems. I would never compare beforerollover < afterrollover directly, for instance. I would always perform the subtraction to find the duration that takes rollover into account, and then base any other calculations on the duration.
Environment.TickCount 似乎比其他解决方案快得多:
测量值是由以下代码生成的:
Environment.TickCount seems to be much faster than the other solutions:
The measurements were generated by the following code:
以下是该主题中可能最有用的答案和评论的更新和刷新摘要。 加上额外的基准和变体:
首先:正如其他人在评论中指出的那样,过去几年情况发生了变化,对于“现代”Windows(Windows XP 及更高版本)和.NET,以及现代硬件,没有或几乎没有原因不要使用 Stopwatch()。
请参阅 MSDN 了解详细信息。 报价:
但是,如果您不需要 Stopwatch() 的精度,或者至少想准确了解 Stopwatch(静态与基于实例)和其他可能变体的性能,请继续阅读:
我接管了 cskwg 的基准,并扩展了更多变体的代码。我已经用一些进行了测量岁 Core i7 i7-4700MQ(“Haswell-MB”(四核,22 nm)。 2013 年份)和 C# 7 和 Visual Studio 2017(更准确地说,使用 .NET 4.5.2 编译,尽管是二进制文字,但它是 C# 6(使用此:字符串文字和“使用静态”)。 特别是 Stopwatch() 性能与上述基准相比似乎有所提高。
这是循环重复 1000 万次的结果示例。 与往常一样,绝对值并不重要,但即使相对值在其他硬件上也可能有所不同:
32 位,未经优化的发布模式:
32 位,发布模式,优化:
64 位,未优化的发布模式:
64 位,发布模式,优化:
这可能非常有趣,创建一个 DateTime 值来打印秒表时间似乎几乎没有任何成本。 有趣的是,静态秒表稍微快一点(正如预期的那样),这是一种比实用更学术的方式。 有些优化点还是蛮有趣的。
例如,我无法解释为什么仅 32 位的 Stopwatch.ElapsedMilliseconds 与其他变体(例如静态变体)相比如此慢。 这和 DateTime.Now 在 64 位上的速度提高了一倍多。
您可以看到:只有对于数百万次执行,秒表的时间才开始重要。 如果情况确实如此(但要注意微优化太早),那么使用 GetTickCount64() 可能会很有趣,但尤其是使用 DateTime.UtcNow,您将拥有一个 64 位(长)计时器精度低于秒表,但速度更快,这样您就不必浪费时间使用 32 位“丑陋”的 Environment.TickCount。
正如预期的那样,DateTime.Now 是迄今为止最慢的。
如果运行它,代码还会检索您当前的秒表精度等。
这是完整的基准代码:
[...]
Here is kind of an updated&refreshed summary of what may be the most useful answers and comments in this thread. Plus extra benchmarks and variants:
First thing first: As others have pointed out in comments, things have changed the last years and with "modern" Windows (Windows XP and later) and .NET, and modern hardware there are no or little reasons not to use Stopwatch().
See MSDN for details. Quotations:
But if you don't need the precision of Stopwatch() or at least want to know exactly about the performance of Stopwatch (static vs. instance-based) and other possible variants, continue reading:
I took over the benchmark from cskwg, and extended the code for more variants. I have measured with a some years old Core i7 i7-4700MQ ("Haswell-MB" (quad-core, 22 nm). 2013 vintage) and C# 7 with Visual Studio 2017 (to be more precise, compiled with .NET 4.5.2, despite binary literals, it is C# 6 (used of this: string literals and 'using static'). Especially the Stopwatch() performance seems to be improved compared to the mentioned benchmark.
This is an example of results of 10 million repetitions in a loop. As always, absolute values are not important, but even the relative values may differ on other hardware:
32 bit, Release mode without optimization:
32 bit, Release mode, optimized:
64 bit, Release mode without optimization:
64 bit, Release mode, optimized:
It may be very interesting, that creating a DateTime value to print out the Stopwatch time seems to have nearly no costs. Interesting in a more academic than practical way is that static Stopwatch is slightly faster (as expected). Some optimization points are quite interesting.
For example, I cannot explain why Stopwatch.ElapsedMilliseconds only with 32 bit is so slow compared to it's other variants, for example the static one. This and DateTime.Now more than double their speed with 64 bit.
You can see: Only for millions of executions, the time of Stopwatch begins to matter. If this is really the case (but beware micro-optimizing too early), it may be interesting that with GetTickCount64(), but especially with DateTime.UtcNow, you have a 64 bit (long) timer with less precision than Stopwatch, but faster, so that you don't have to mess around with the 32 bit "ugly" Environment.TickCount.
As expected, DateTime.Now is by far the slowest of all.
If you run it, the code retrieves also your current Stopwatch accuracy and more.
Here is the full benchmark code:
[...]
您可能需要
System.Diagnostics.StopWatch
。You probably want
System.Diagnostics.StopWatch
.如果您正在寻找
Environment.TickCount
的功能,但又不想产生创建新Stopwatch
对象的开销,则可以使用静态Stopwatch.GetTimestamp()< /code> 方法(以及
Stopwatch.Frequency
)来计算长时间跨度。 因为GetTimestamp()
返回一个long
,所以它在非常非常长的时间内不会溢出(超过 100,000 年,在我用来写这个的机器上) 。 它也比Environment.TickCount
更准确,后者的最大分辨率为 10 到 16 毫秒。If you're looking for the functionality of
Environment.TickCount
but without the overhead of creating newStopwatch
objects, you can use the staticStopwatch.GetTimestamp()
method (along withStopwatch.Frequency
) to calculate long time spans. BecauseGetTimestamp()
returns along
, it won't overflow for a very, very long time (over 100,000 years, on the machine I'm using to write this). It's also much more accurate thanEnvironment.TickCount
which has a maximum resolution of 10 to 16 milliseconds.使用
它有一个属性称为
Use
It has a property called
TickCount64
对这个新函数进行一些快速测量,我发现(优化,发布 64 位,10 亿次循环):
未优化代码的测量是相似的。
测试代码:
TickCount64
Doing some quick measurements on this new function, I found (optimized, release 64-bit, 1000 million loops):
The measurements for not-optimized code were similar.
Test code:
您应该使用 Stopwatch 类。
You should use the Stopwatch class instead.
我使用Environment.TickCount 是因为:
话虽这么说,如果您可以的话,我还建议您使用秒表。 或者您可以花大约 1 分钟编写一个类似秒表的类来包装 Environment.TickCount。
顺便说一句,我在 Stopwatch 文档中没有看到任何提到底层计时器机制的环绕问题,所以我不会惊讶地发现 Stopwatch 遇到同样的问题。 但同样,我不会花任何时间担心它。
I use Environment.TickCount because:
That being said, I would also recommend using Stopwatch, if it's available to you. Or you could take about 1 minute and write a Stopwatch-like class that wraps Environment.TickCount.
BTW, I see nothing in the Stopwatch documentation that mentions the wrap-around problem with the underlying timer mechanism, so I wouldn't be surprised at all to find that Stopwatch suffers from the same problem. But again, I wouldn't spend any time worrying about it.
对于一次性计时,编写起来更简单,
我猜想,考虑到 ElapsedTicks 字段很长,TickCount 中不太可能出现的环绕对于 StopWatch 来说更不用担心。 在我的机器上,秒表具有高分辨率,每秒 2.4e9 个刻度。 即使按照这个速度,蜱虫场也需要 121 年才能溢出。 当然,我不知道幕后发生了什么,所以对此持保留态度。 但是,我注意到 StopWatch 的文档甚至没有提到环绕问题,而 TickCount 的文档却提到了。
For one-shot timing, it's even simpler to write
I'd guess the cosmically unlikely wraparound in TickCount is even less of a concern for StopWatch, given that the ElapsedTicks field is a long. On my machine, StopWatch is high resolution, at 2.4e9 ticks per second. Even at that rate, it would take over 121 years to overflow the ticks field. Of course, I don't know what's going on under the covers, so take that with a grain of salt. However, I notice that the documentation for StopWatch doesn't even mention the wraparound issue, while the doc for TickCount does.
我本来想说将其包装到秒表类中,但是 Grzenio 已经说过了 正确的事情,所以我会给他加薪。 这种封装因素决定了哪种方式更好,并且这可能会随着时间的推移而改变。 我记得我对在某些系统上花费时间的成本感到震惊,因此拥有一个可以实施最佳技术的地方非常重要。
I was going to say wrap it into a stopwatch class, but Grzenio already said the right thing, so I will give him an uptick. Such encapsulation factors out the decision as to which way is better, and this can change in time. I remember being shocked at how expensive it can be getting the time on some systems, so having one place that can implement the best technique can be very important.
溢出补偿
如前所述,翻转可能会在 24.9 天后发生,或者,如果您使用 uint 转换,则可能会在 49.8 天后发生。
因为我不想P/Invoke GetTickCount64,所以我写了这个溢出补偿。 示例代码使用“字节”来方便地保存数字。 请看一下; 它仍然可能包含错误:
Overflow compensation
As said before, rollover may happen after 24.9 days, or, if you use an uint cast, after 49.8 days.
Because I did not want to P/Invoke GetTickCount64, I wrote this overflow compensation. The sample code is using 'byte' to keep the numbers handy. Please have a look at it; it still might contain errors: