快速傅立叶变换 (FFT) 的 C# 实现

发布于 2024-07-07 19:40:22 字数 1560 浏览 10 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(9

烟雨扶苏 2024-07-14 19:40:22

开发 AForge 的人做得相当不错,但还达不到商业质量。 从中学习很棒,但你可以看出他也在学习,所以他犯了一些非常严重的错误,比如假设图像的大小,而不是使用正确的每像素位数。

我并不是要打击这个人,我尊重他学习所有这些并向我们展示如何做到这一点。 我认为他现在是一名博士,或者至少他即将成为一名博士,所以他真的很聪明,只是不是一个商业可用的图书馆。

Math.Net 库在处理傅立叶变换和复杂图像/数字时有其自身的怪异之处。 就像,如果我没记错的话,它以人类可见的格式输出傅立叶变换,如果您想查看变换的图片,这对人类来说很好,但当您期望数据处于某种特定格式时,它就不太好了格式(正常格式)。 我可能会弄错,但我只记得有一些奇怪的地方,所以我实际上去了他们用于傅里叶东西的原始代码,它工作得更好。 (ExocortexDSP v1.2 http://www.exocortex.org/dsp/)

Math.net 也在处理来自 FFT 的数据时,还有一些我不喜欢的其他时髦之处,我不记得那是什么了,我只知道从 ExoCortex DSP 库中获得我想要的东西要容易得多。 但我不是数学家或工程师; 对于那些人来说这可能很有意义。

所以! 我使用从 ExoCortex 中提取的 FFT 代码,这是 Math.Net 的基础,没有任何其他东西,而且效果很好。

最后,我知道这不是 C#,但我已经开始考虑使用 FFTW (http://www.fftw.org /)。 这个人已经制作了一个 C# 包装器,所以我打算检查一下,但还没有实际使用它。 (http://www.sdss.jhu.edu/~tamas/bytes/ fftwcsharp.html

哦! 我不知道你这样做是为了学校还是工作,但无论怎样,iTunes 大学上都有斯坦福大学教授提供的精彩免费系列讲座。

https://podcasts.apple.com/us /podcast/the-fourier-transforms-and-its-applications/id384232849

The guy that did AForge did a fairly good job but it's not commercial quality. It's great to learn from but you can tell he was learning too so he has some pretty serious mistakes like assuming the size of an image instead of using the correct bits per pixel.

I'm not knocking the guy, I respect the heck out of him for learning all that and show us how to do it. I think he's a Ph.D now or at least he's about to be so he's really smart it's just not a commercially usable library.

The Math.Net library has its own weirdness when working with Fourier transforms and complex images/numbers. Like, if I'm not mistaken, it outputs the Fourier transform in human viewable format which is nice for humans if you want to look at a picture of the transform but it's not so good when you are expecting the data to be in a certain format (the normal format). I could be mistaken about that but I just remember there was some weirdness so I actually went to the original code they used for the Fourier stuff and it worked much better. (ExocortexDSP v1.2 http://www.exocortex.org/dsp/)

Math.net also had some other funkyness I didn't like when dealing with the data from the FFT, I can't remember what it was I just know it was much easier to get what I wanted out of the ExoCortex DSP library. I'm not a mathematician or engineer though; to those guys it might make perfect sense.

So! I use the FFT code yanked from ExoCortex, which Math.Net is based on, without anything else and it works great.

And finally, I know it's not C#, but I've started looking at using FFTW (http://www.fftw.org/). And this guy already made a C# wrapper so I was going to check it out but haven't actually used it yet. (http://www.sdss.jhu.edu/~tamas/bytes/fftwcsharp.html)

OH! I don't know if you are doing this for school or work but either way there is a GREAT free lecture series given by a Stanford professor on iTunes University.

https://podcasts.apple.com/us/podcast/the-fourier-transforms-and-its-applications/id384232849

毁虫ゝ 2024-07-14 19:40:22

AForge.net 是一个免费(开源)库,支持快速傅里叶变换。 (请参阅 Sources/Imaging/ComplexImage.cs对于使用,Sources/Math/FourierTransform.cs 用于实施)

AForge.net is a free (open-source) library with Fast Fourier Transform support. (See Sources/Imaging/ComplexImage.cs for usage, Sources/Math/FourierTransform.cs for implemenation)

溇涏 2024-07-14 19:40:22

Math.NET 的 Iridium 库 提供快速、定期更新的数学相关函数集合,包括 FFT。 它根据 LGPL 获得许可,因此您可以在商业产品中自由使用它。

Math.NET's Iridium library provides a fast, regularly updated collection of math-related functions, including the FFT. It's licensed under the LGPL so you are free to use it in commercial products.

墟烟 2024-07-14 19:40:22

我看到这是一个旧线程,但就其价值而言,这是我在 2010 年编写的免费(MIT 许可证)一维 2 次方长度 C# FFT 实现。

我还没有将其性能与其他实现进行比较C# FFT 实现。 我写它主要是为了比较Flash/ActionScript和Silverlight/C#的性能。 后者要快得多,至少对于数字运算来说是这样。

/**
 * Performs an in-place complex FFT.
 *
 * Released under the MIT License
 *
 * Copyright (c) 2010 Gerald T. Beauregard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */
public class FFT2
{
    // Element for linked list in which we store the
    // input/output data. We use a linked list because
    // for sequential access it's faster than array index.
    class FFTElement
    {
        public double re = 0.0;     // Real component
        public double im = 0.0;     // Imaginary component
        public FFTElement next;     // Next element in linked list
        public uint revTgt;         // Target position post bit-reversal
    }

    private uint m_logN = 0;        // log2 of FFT size
    private uint m_N = 0;           // FFT size
    private FFTElement[] m_X;       // Vector of linked list elements

    /**
     *
     */
    public FFT2()
    {
    }

    /**
     * Initialize class to perform FFT of specified size.
     *
     * @param   logN    Log2 of FFT length. e.g. for 512 pt FFT, logN = 9.
     */
    public void init(
        uint logN )
    {
        m_logN = logN;
        m_N = (uint)(1 << (int)m_logN);

        // Allocate elements for linked list of complex numbers.
        m_X = new FFTElement[m_N];
        for (uint k = 0; k < m_N; k++)
            m_X[k] = new FFTElement();

        // Set up "next" pointers.
        for (uint k = 0; k < m_N-1; k++)
            m_X[k].next = m_X[k+1];

        // Specify target for bit reversal re-ordering.
        for (uint k = 0; k < m_N; k++ )
            m_X[k].revTgt = BitReverse(k,logN);
    }

    /**
     * Performs in-place complex FFT.
     *
     * @param   xRe     Real part of input/output
     * @param   xIm     Imaginary part of input/output
     * @param   inverse If true, do an inverse FFT
     */
    public void run(
        double[] xRe,
        double[] xIm,
        bool inverse = false )
    {
        uint numFlies = m_N >> 1;   // Number of butterflies per sub-FFT
        uint span = m_N >> 1;       // Width of the butterfly
        uint spacing = m_N;         // Distance between start of sub-FFTs
        uint wIndexStep = 1;        // Increment for twiddle table index

        // Copy data into linked complex number objects
        // If it's an IFFT, we divide by N while we're at it
        FFTElement x = m_X[0];
        uint k = 0;
        double scale = inverse ? 1.0/m_N : 1.0;
        while (x != null)
        {
            x.re = scale*xRe[k];
            x.im = scale*xIm[k];
            x = x.next;
            k++;
        }

        // For each stage of the FFT
        for (uint stage = 0; stage < m_logN; stage++)
        {
            // Compute a multiplier factor for the "twiddle factors".
            // The twiddle factors are complex unit vectors spaced at
            // regular angular intervals. The angle by which the twiddle
            // factor advances depends on the FFT stage. In many FFT
            // implementations the twiddle factors are cached, but because
            // array lookup is relatively slow in C#, it's just
            // as fast to compute them on the fly.
            double wAngleInc = wIndexStep * 2.0*Math.PI/m_N;
            if (inverse == false)
                wAngleInc *= -1;
            double wMulRe = Math.Cos(wAngleInc);
            double wMulIm = Math.Sin(wAngleInc);

            for (uint start = 0; start < m_N; start += spacing)
            {
                FFTElement xTop = m_X[start];
                FFTElement xBot = m_X[start+span];

                double wRe = 1.0;
                double wIm = 0.0;

                // For each butterfly in this stage
                for (uint flyCount = 0; flyCount < numFlies; ++flyCount)
                {
                    // Get the top & bottom values
                    double xTopRe = xTop.re;
                    double xTopIm = xTop.im;
                    double xBotRe = xBot.re;
                    double xBotIm = xBot.im;

                    // Top branch of butterfly has addition
                    xTop.re = xTopRe + xBotRe;
                    xTop.im = xTopIm + xBotIm;

                    // Bottom branch of butterly has subtraction,
                    // followed by multiplication by twiddle factor
                    xBotRe = xTopRe - xBotRe;
                    xBotIm = xTopIm - xBotIm;
                    xBot.re = xBotRe*wRe - xBotIm*wIm;
                    xBot.im = xBotRe*wIm + xBotIm*wRe;

                    // Advance butterfly to next top & bottom positions
                    xTop = xTop.next;
                    xBot = xBot.next;

                    // Update the twiddle factor, via complex multiply
                    // by unit vector with the appropriate angle
                    // (wRe + j wIm) = (wRe + j wIm) x (wMulRe + j wMulIm)
                    double tRe = wRe;
                    wRe = wRe*wMulRe - wIm*wMulIm;
                    wIm = tRe*wMulIm + wIm*wMulRe;
                }
            }

            numFlies >>= 1;     // Divide by 2 by right shift
            span >>= 1;
            spacing >>= 1;
            wIndexStep <<= 1;   // Multiply by 2 by left shift
        }

        // The algorithm leaves the result in a scrambled order.
        // Unscramble while copying values from the complex
        // linked list elements back to the input/output vectors.
        x = m_X[0];
        while (x != null)
        {
            uint target = x.revTgt;
            xRe[target] = x.re;
            xIm[target] = x.im;
            x = x.next;
        }
    }

    /**
     * Do bit reversal of specified number of places of an int
     * For example, 1101 bit-reversed is 1011
     *
     * @param   x       Number to be bit-reverse.
     * @param   numBits Number of bits in the number.
     */
    private uint BitReverse(
        uint x,
        uint numBits)
    {
        uint y = 0;
        for (uint i = 0; i < numBits; i++)
        {
            y <<= 1;
            y |= x & 0x0001;
            x >>= 1;
        }
        return y;
    }

}

I see this is an old thread, but for what it's worth, here's a free (MIT License) 1-D power-of-2-length-only C# FFT implementation I wrote in 2010.

I haven't compared its performance to other C# FFT implementations. I wrote it mainly to compare the performance of Flash/ActionScript and Silverlight/C#. The latter is much faster, at least for number crunching.

/**
 * Performs an in-place complex FFT.
 *
 * Released under the MIT License
 *
 * Copyright (c) 2010 Gerald T. Beauregard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */
public class FFT2
{
    // Element for linked list in which we store the
    // input/output data. We use a linked list because
    // for sequential access it's faster than array index.
    class FFTElement
    {
        public double re = 0.0;     // Real component
        public double im = 0.0;     // Imaginary component
        public FFTElement next;     // Next element in linked list
        public uint revTgt;         // Target position post bit-reversal
    }

    private uint m_logN = 0;        // log2 of FFT size
    private uint m_N = 0;           // FFT size
    private FFTElement[] m_X;       // Vector of linked list elements

    /**
     *
     */
    public FFT2()
    {
    }

    /**
     * Initialize class to perform FFT of specified size.
     *
     * @param   logN    Log2 of FFT length. e.g. for 512 pt FFT, logN = 9.
     */
    public void init(
        uint logN )
    {
        m_logN = logN;
        m_N = (uint)(1 << (int)m_logN);

        // Allocate elements for linked list of complex numbers.
        m_X = new FFTElement[m_N];
        for (uint k = 0; k < m_N; k++)
            m_X[k] = new FFTElement();

        // Set up "next" pointers.
        for (uint k = 0; k < m_N-1; k++)
            m_X[k].next = m_X[k+1];

        // Specify target for bit reversal re-ordering.
        for (uint k = 0; k < m_N; k++ )
            m_X[k].revTgt = BitReverse(k,logN);
    }

    /**
     * Performs in-place complex FFT.
     *
     * @param   xRe     Real part of input/output
     * @param   xIm     Imaginary part of input/output
     * @param   inverse If true, do an inverse FFT
     */
    public void run(
        double[] xRe,
        double[] xIm,
        bool inverse = false )
    {
        uint numFlies = m_N >> 1;   // Number of butterflies per sub-FFT
        uint span = m_N >> 1;       // Width of the butterfly
        uint spacing = m_N;         // Distance between start of sub-FFTs
        uint wIndexStep = 1;        // Increment for twiddle table index

        // Copy data into linked complex number objects
        // If it's an IFFT, we divide by N while we're at it
        FFTElement x = m_X[0];
        uint k = 0;
        double scale = inverse ? 1.0/m_N : 1.0;
        while (x != null)
        {
            x.re = scale*xRe[k];
            x.im = scale*xIm[k];
            x = x.next;
            k++;
        }

        // For each stage of the FFT
        for (uint stage = 0; stage < m_logN; stage++)
        {
            // Compute a multiplier factor for the "twiddle factors".
            // The twiddle factors are complex unit vectors spaced at
            // regular angular intervals. The angle by which the twiddle
            // factor advances depends on the FFT stage. In many FFT
            // implementations the twiddle factors are cached, but because
            // array lookup is relatively slow in C#, it's just
            // as fast to compute them on the fly.
            double wAngleInc = wIndexStep * 2.0*Math.PI/m_N;
            if (inverse == false)
                wAngleInc *= -1;
            double wMulRe = Math.Cos(wAngleInc);
            double wMulIm = Math.Sin(wAngleInc);

            for (uint start = 0; start < m_N; start += spacing)
            {
                FFTElement xTop = m_X[start];
                FFTElement xBot = m_X[start+span];

                double wRe = 1.0;
                double wIm = 0.0;

                // For each butterfly in this stage
                for (uint flyCount = 0; flyCount < numFlies; ++flyCount)
                {
                    // Get the top & bottom values
                    double xTopRe = xTop.re;
                    double xTopIm = xTop.im;
                    double xBotRe = xBot.re;
                    double xBotIm = xBot.im;

                    // Top branch of butterfly has addition
                    xTop.re = xTopRe + xBotRe;
                    xTop.im = xTopIm + xBotIm;

                    // Bottom branch of butterly has subtraction,
                    // followed by multiplication by twiddle factor
                    xBotRe = xTopRe - xBotRe;
                    xBotIm = xTopIm - xBotIm;
                    xBot.re = xBotRe*wRe - xBotIm*wIm;
                    xBot.im = xBotRe*wIm + xBotIm*wRe;

                    // Advance butterfly to next top & bottom positions
                    xTop = xTop.next;
                    xBot = xBot.next;

                    // Update the twiddle factor, via complex multiply
                    // by unit vector with the appropriate angle
                    // (wRe + j wIm) = (wRe + j wIm) x (wMulRe + j wMulIm)
                    double tRe = wRe;
                    wRe = wRe*wMulRe - wIm*wMulIm;
                    wIm = tRe*wMulIm + wIm*wMulRe;
                }
            }

            numFlies >>= 1;     // Divide by 2 by right shift
            span >>= 1;
            spacing >>= 1;
            wIndexStep <<= 1;   // Multiply by 2 by left shift
        }

        // The algorithm leaves the result in a scrambled order.
        // Unscramble while copying values from the complex
        // linked list elements back to the input/output vectors.
        x = m_X[0];
        while (x != null)
        {
            uint target = x.revTgt;
            xRe[target] = x.re;
            xIm[target] = x.im;
            x = x.next;
        }
    }

    /**
     * Do bit reversal of specified number of places of an int
     * For example, 1101 bit-reversed is 1011
     *
     * @param   x       Number to be bit-reverse.
     * @param   numBits Number of bits in the number.
     */
    private uint BitReverse(
        uint x,
        uint numBits)
    {
        uint y = 0;
        for (uint i = 0; i < numBits; i++)
        {
            y <<= 1;
            y |= x & 0x0001;
            x >>= 1;
        }
        return y;
    }

}

情绪操控生活 2024-07-14 19:40:22

一个老问题,但它仍然出现在 Google 结果中...

找到一个非常不受限制的 MIT 许可的 C# / .NET 库

可以在https://www.codeproject.com/articles/1107480/dsplib-fft-dft-fourier-transform-library-for- net

这个库速度很快,因为它在多个内核上并行线程,并且非常完整且易于使用。

An old question but it still shows up in Google results...

A very un-restrictive MIT Licensed C# / .NET library can be found at,

https://www.codeproject.com/articles/1107480/dsplib-fft-dft-fourier-transform-library-for-net

This library is fast as it parallel threads on multiple cores and is very complete and ready to use.

絕版丫頭 2024-07-14 19:40:22

这是另一个; Ooura FFT 的 C# 端口。 这是相当快的。 该软件包还包括重叠/相加卷积和一些其他 DSP 内容,均获得 MIT 许可。

https://github.com/hughpyle/inguz-DSPUtil/blob/ master/Fourier.cs

Here's another; a C# port of the Ooura FFT. It's reasonably fast. The package also includes overlap/add convolution and some other DSP stuff, under the MIT license.

https://github.com/hughpyle/inguz-DSPUtil/blob/master/Fourier.cs

合约呢 2024-07-14 19:40:22

http://www.exocortex.org/dsp/ 是一个带有 FFT 的开源 C# 数学库算法。

http://www.exocortex.org/dsp/ is an open-source C# mathematics library with FFT algorithms.

满意归宿 2024-07-14 19:40:22

如果您不介意输入的话,Numerical Recipes 网站 (http://www.nr.com/) 有一个 FFT。我正在开展一个项目,将 Labview 程序转换为 C# 2008、.NET 3.5 以获取数据和然后看频谱。 不幸的是,Math.Net 使用最新的 .NET 框架,所以我无法使用该 FFT。 我尝试了外皮质 - 它有效,但结果与 Labview 结果相匹配,而且我不知道足够的 FFT 理论来知道是什么导致了问题。 所以我在数字食谱网站上尝试了 FFT,它成功了! 我还能够对 Labview 低旁瓣窗口进行编程(并且必须引入缩放因子)。

您可以在他们的网站上以访客身份阅读《数值食谱》一书的章节,但这本书非常有用,因此我强烈建议购买它。 即使您最终使用了 Math.NET FFT。

The Numerical Recipes website (http://www.nr.com/) has an FFT if you don't mind typing it in. I am working on a project converting a Labview program to C# 2008, .NET 3.5 to acquire data and then look at the frequency spectrum. Unfortunately the Math.Net uses the latest .NET framework, so I couldn't use that FFT. I tried the Exocortex one - it worked but the results to match the Labview results and I don't know enough FFT theory to know what is causing the problem. So I tried the FFT on the numerical recipes website and it worked! I was also able to program the Labview low sidelobe window (and had to introduce a scaling factor).

You can read the chapter of the Numerical Recipes book as a guest on thier site, but the book is so useful that I highly recomend purchasing it. Even if you do end up using the Math.NET FFT.

始于初秋 2024-07-14 19:40:22

对于针对 Intel 处理器调整的多线程实现,我会查看 Intel 的 MKL 库。 它不是免费的,但是价格实惠(不到 100 美元)并且速度极快 - 但您需要通过 P/Invokes 调用它的 C dll。 Exocortex 项目在 6 年前停止了开发,所以如果这是一个重要的项目,我会小心使用它。

For a multi-threaded implementation tuned for Intel processors I'd check out Intel's MKL library. It's not free, but it's afforable (less than $100) and blazing fast - but you'd need to call it's C dll's via P/Invokes. The Exocortex project stopped development 6 years ago, so I'd be careful using it if this is an important project.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文