论路径寻找:为外行人详细讲解D*算法

发布于 2024-07-07 01:04:56 字数 173 浏览 9 评论 0原文

我希望处理的大型网络(小世界图类型)本质上是动态的,新节点经常添加和删除。 想必在这种动态环境中使用 D* 而不是 A* 是检测路径的更好方法吗?

D*有多坚固? 它有任何现实世界的经验吗? 就像加密算法一样 - D* 是否经过大量同行评审和测试而变得更加坚固? 你会用 D* 来解决这个问题吗?

The large network (of small world graph type) I wish to deal with is dynamic in nature, new nodes are added and subtracted frequently. Presumably using D* over A* would be a better way to detect paths in this dynamic environment?

How solid is D*? has it had any real world experience? like a cryptographic algorithm - is D* hardened by lots of peer review and testing? Would you use D* for this problem?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

晨光如昨 2024-07-14 01:04:56

我已经实现了 D* 和 A* 算法。 所以,我建议你,如果你的地图没有动态障碍物,你应该实现A*。 否则,实施 D*。 主要原因是:
在第一次搜索时,D* 计算地图中的所有节点,然后显示最短路径,而 A* 只计算地图中目标点和起点周围的有限区域。 因此,它比 D* 快得多。
在动态环境中,D*比A*更快、更高效。 因为在机器人行驶的过程中,如果它检测到新的障碍物,它只会更新意外障碍物周围的几个节点。 同时,A*会重新计算所有的事情。

I have implemented both D* and A* algorithm. So, I advice you that, if your map has no dynamic obstacles, you should implement A*. Else, implement D*. For the main reason is:
At the first search, D* calculates all nodes in the map, then shows you the shortest path, while A* only calculates a limited area around goal and start points in the map. So, it is much faster than D*.
In dynamic environment, D* is faster and more efficient than A*. Because on the way robot goes, if it detects a new obstacle, it only updates a few nodes around the unexpected obstacle. While, A* will calculates again all things.

风流物 2024-07-14 01:04:56

据我了解,第一次运行 D* 时,它会找到与 A* 相同的路径,并且运行时间几乎相同。 然而,当节点更改其边缘值或添加节点时,A* 会重新计算所有路径,而 D* 只是在第二次重新计算不一致的节点,而不是整个路径。

Anthony Stentz 的 D* 算法(原始白皮书此处)在很大程度上已被其作品的衍生品所弃用。 D* Lite 和 LPA* 是最常见的,并且更容易编码/实现。

就现实世界的经验而言,来自 NASA 喷气推进实验室的 Joseph Carsten 和 Art Rankin 在火星漫游者“勇气号”和“机遇号”上安装了使用 D* Lite 元素的 Field D* 版本(使用 D* 的漫游车的幻灯片此处)。 2007年2月,它被用来实现火星车的完全自主导航。

替代文本 http://asm.arc.nasa.gov/Gallery/images /generic/rover.jpg

显然,D* 在机器人领域非常有用,因为机器人机载传感器不断地重新评估边缘值。 在我看来,这将使其变得相当“经过考验”。

同样,我发现另一份 白皮书 提到了 D* Lite 的使用移动游戏中的算法。

我将通过声明我以前从未实现过 D*,只实现过 A* 来结束这个答案。 由于复杂性显着增加,我认为 D*(或 D* Lite)仅应在图表中存在重大且频繁变化的情况下使用。 您描述的情况与此类似,所以我会说肯定选择 D* Lite。 如果美国宇航局使用它,你可以放心地打赌它已经被彻底调查过。

As I understand, the first time you run D* it finds the same path as A* with nearly the same runtime. However, when a node changes it's edge value or nodes are added A* recomputes ALL of the path while D* simply recomputes the inconsistent nodes the second time around rather than the whole thing.

Anthony Stentz's D* algorithm (original whitepaper here) has largely been deprecated by derivatives of his work. D* Lite and LPA* are the most commonly found and are much easier to code/implement.

As far as real world experience, Joseph Carsten and Art Rankin from NASA's Jet Propulsion Laboratory installed a version of Field D* using elements of D* Lite on the mars rovers "Spirit" and "Opportunity" (slideshow of rovers using D* here). In Feburary 2007 it was used to fully navigate the mars rover autonomously.

alt text http://asm.arc.nasa.gov/Gallery/images/generic/rover.jpg

Apparently D* is really useful in the robotics domain because the robots on-board sensors are constantly re-evaluating edge values. That would make it pretty "battle tested" in my own opinion.

Similarly, I found another whitepaper that mentions the use of the D* Lite algorithm in Mobile Gaming.

I'll end this answer by stating that I've never implemented D* before, only A*. Because of the significant increase in complexity I would say that D* (or D* Lite) should only be used in cases where there is a significant and frequent changes in the graph. You described your situation as being similar to that so I would say definately go for D* Lite. If NASA uses it you could safely bet it has been thoroughly investigated.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文