什么是按位移位(bit-shift)运算符以及它们如何工作?

发布于 2024-07-05 12:11:54 字数 208 浏览 13 评论 0 原文

我一直在业余时间尝试学习 C,其他语言(C#、Java 等)也有相同的概念(通常也有相同的运算符)...

在核心层面,位移位 (< code><<、>>>>>) 能做什么,它能帮助解决什么问题,以及潜伏着什么问题拐弯处? 换句话说,这是一本关于位移位所有优点的绝对初学者指南。

I've been attempting to learn C in my spare time, and other languages (C#, Java, etc.) have the same concept (and often the same operators)...

At a core level, what does bit-shifting (<<, >>, >>>) do, what problems can it help solve, and what gotchas lurk around the bend? In other words, an absolute beginner's guide to bit shifting in all its goodness.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(11

茶花眉 2024-07-12 12:11:54

移位运算符的作用正如其名称所暗示的那样。 他们移位。 以下是对不同移位运算符的简要(或不那么简要)介绍。

运算符

  • >> 是算术(或有符号)右移运算符。
  • >>> 是逻辑(或无符号)右移运算符。
  • << 是左移运算符,可以满足逻辑移位和算术移位的需要。

所有这些运算符都可以应用于整数值(intlong,可能是 shortbyte字符)。 在某些语言中,将移位运算符应用于任何小于 int 的数据类型会自动将操作数的大小调整为 int。

请注意,<<< 不是运算符,因为它是多余的。

另请注意,C 和 C++ 不区分右移运算符。 它们仅提供 >> 运算符,并且右移行为是为有符号类型定义的实现。 答案的其余部分使用 C# / Java 运算符。

(在所有主流 C 和 C++ 实现中,包括 GCC 和 Clang/LLVM,有符号类型上的 >> 是算术。有些代码假设了这一点,但这不是标准保证的。它不是 < em>未定义,尽管如此;标准要求实现以一种或另一种方式定义它,但是,负符号数的左移未定义的行为(有符号整数溢出)。算术右移,使用无符号类型进行位移动通常是一个好主意。)


左移 (<<)

整数在内存中作为一系列位存储。 例如,数字 6 存储为 32 位 int 将是:

00000000 00000000 00000000 00000110

将此位模式向左移动一位 (6 << 1) 将导致数字 12:

00000000 00000000 00000000 00001100

如您所见,数字向左移动了一位,右侧最后一位数字用零填充。 您可能还注意到,左移相当于乘以 2 的幂。因此 6 << 1 相当于 6 * 2,并且 6 << 3 相当于 6 * 8。 一个好的优化编译器会尽可能用移位代替乘法。

非循环移位

请注意,这些不是循环移位。 将此值向左移动一位 (3,758,096,384 << 1):

11100000 00000000 00000000 00000000

结果为 3,221,225,472:

11000000 00000000 00000000 00000000

“偏离末尾”的数字会丢失。 它不会环绕。


逻辑右移 (>>)

逻辑右移与左移相反。 它们不是向左移动位,而是向右移动。 例如,将数字 12:

00000000 00000000 00000000 00001100

向右移动一位(12 >>> 1)将得到我们原来的 6:

00000000 00000000 00000000 00000110

所以我们看到向右移动相当于除法2 的幂。

丢失的位消失了。

但是,移位不能收回“丢失”的位。 例如,如果我们将此模式:

00111000 00000000 00000000 00000110

向左移动 4 个位置 (939,524,102 << 4),我们将得到 2,147,483,744:,

10000000 00000000 00000000 01100000

然后向后移动 ((939,524,102 << 4) >> 4) 我们得到 134,217,734:

00001000 00000000 00000000 00000110

一旦丢失了位,我们就无法恢复原始值。


算术右移 (>>)

算术右移与逻辑右移完全相同,只不过它不是用零填充,而是用最高有效位填充。 这是因为最高有效位是符号位,或者区分正数和负数的位。 通过用最高有效位填充,算术右移可以保留符号。

例如,如果我们将此位模式解释为负数:

10000000 00000000 00000000 01100000

我们得到数字 -2,147,483,552。 通过算术移位 (-2,147,483,552 >> 4) 将其向右移动 4 个位置将得到:

11111000 00000000 00000000 00000110

或数字 -134,217,722。

所以我们看到,我们通过使用算术右移而不是逻辑右移保留了负数的符号。 我们再一次看到我们正在执行 2 的幂除法。

The bit shifting operators do exactly what their name implies. They shift bits. Here's a brief (or not-so-brief) introduction to the different shift operators.

The Operators

  • >> is the arithmetic (or signed) right shift operator.
  • >>> is the logical (or unsigned) right shift operator.
  • << is the left shift operator, and meets the needs of both logical and arithmetic shifts.

All of these operators can be applied to integer values (int, long, possibly short and byte or char). In some languages, applying the shift operators to any datatype smaller than int automatically resizes the operand to be an int.

Note that <<< is not an operator, because it would be redundant.

Also note that C and C++ do not distinguish between the right shift operators. They provide only the >> operator, and the right-shifting behavior is implementation defined for signed types. The rest of the answer uses the C# / Java operators.

(In all mainstream C and C++ implementations including GCC and Clang/LLVM, >> on signed types is arithmetic. Some code assumes this, but it isn't something the standard guarantees. It's not undefined, though; the standard requires implementations to define it one way or another. However, left shifts of negative signed numbers is undefined behaviour (signed integer overflow). So unless you need arithmetic right shift, it's usually a good idea to do your bit-shifting with unsigned types.)


Left shift (<<)

Integers are stored, in memory, as a series of bits. For example, the number 6 stored as a 32-bit int would be:

00000000 00000000 00000000 00000110

Shifting this bit pattern to the left one position (6 << 1) would result in the number 12:

00000000 00000000 00000000 00001100

As you can see, the digits have shifted to the left by one position, and the last digit on the right is filled with a zero. You might also note that shifting left is equivalent to multiplication by powers of 2. So 6 << 1 is equivalent to 6 * 2, and 6 << 3 is equivalent to 6 * 8. A good optimizing compiler will replace multiplications with shifts when possible.

Non-circular shifting

Please note that these are not circular shifts. Shifting this value to the left by one position (3,758,096,384 << 1):

11100000 00000000 00000000 00000000

results in 3,221,225,472:

11000000 00000000 00000000 00000000

The digit that gets shifted "off the end" is lost. It does not wrap around.


Logical right shift (>>>)

A logical right shift is the converse to the left shift. Rather than moving bits to the left, they simply move to the right. For example, shifting the number 12:

00000000 00000000 00000000 00001100

to the right by one position (12 >>> 1) will get back our original 6:

00000000 00000000 00000000 00000110

So we see that shifting to the right is equivalent to division by powers of 2.

Lost bits are gone

However, a shift cannot reclaim "lost" bits. For example, if we shift this pattern:

00111000 00000000 00000000 00000110

to the left 4 positions (939,524,102 << 4), we get 2,147,483,744:

10000000 00000000 00000000 01100000

and then shifting back ((939,524,102 << 4) >>> 4) we get 134,217,734:

00001000 00000000 00000000 00000110

We cannot get back our original value once we have lost bits.


Arithmetic right shift (>>)

The arithmetic right shift is exactly like the logical right shift, except instead of padding with zero, it pads with the most significant bit. This is because the most significant bit is the sign bit, or the bit that distinguishes positive and negative numbers. By padding with the most significant bit, the arithmetic right shift is sign-preserving.

For example, if we interpret this bit pattern as a negative number:

10000000 00000000 00000000 01100000

we have the number -2,147,483,552. Shifting this to the right 4 positions with the arithmetic shift (-2,147,483,552 >> 4) would give us:

11111000 00000000 00000000 00000110

or the number -134,217,722.

So we see that we have preserved the sign of our negative numbers by using the arithmetic right shift, rather than the logical right shift. And once again, we see that we are performing division by powers of 2.

别再吹冷风 2024-07-12 12:11:54

位运算(包括移位)是低级硬件或嵌入式编程的基础。 如果您阅读设备甚至某些二进制文件格式的规范,您将看到字节、字和双字,它们被分解为非字节对齐的位字段,其中包含各种感兴趣的值。 访问这些位字段以进行读/写是最常见的用法。

图形编程中一个简单的真实示例是,16 位像素表示如下:

  bit | 15| 14| 13| 12| 11| 10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1  | 0 |
      |       Blue        |         Green         |       Red          |

要获取绿色值,您可以执行以下操作:

 #define GREEN_MASK  0x7E0
 #define GREEN_OFFSET  5

 // Read green
 uint16_t green = (pixel & GREEN_MASK) >> GREEN_OFFSET;

说明

为了仅获取绿色值,它开始在偏移量 5 处并以 10 结束(即 6 位长)时,您需要使用(位)掩码,当应用于整个 16 位像素时,只会产生我们感兴趣的位。

#define GREEN_MASK  0x7E0

适当的掩码是0x7E0,二进制为 0000011111100000(十进制为 2016)。

uint16_t green = (pixel & GREEN_MASK) ...;

要应用遮罩,请使用 AND 运算符 (&)。

uint16_t green = (pixel & GREEN_MASK) >> GREEN_OFFSET;

应用掩码后,您将得到一个 16 位数字,它实际上只是一个 11 位数字,因为它的 MSB 位于第 11 位。 绿色实际上只有 6 位长,因此我们需要使用右移 (11 - 6 = 5) 将其缩小,因此使用 5 作为偏移量 (#define GREEN_OFFSET 5)。

同样常见的是使用位移位来快速乘除 2 的幂:

 i <<= x;  // i *= 2^x;
 i >>= y;  // i /= 2^y;

Bitwise operations, including bit shift, are fundamental to low-level hardware or embedded programming. If you read a specification for a device or even some binary file formats, you will see bytes, words, and dwords, broken up into non-byte aligned bitfields, which contain various values of interest. Accessing these bit-fields for reading/writing is the most common usage.

A simple real example in graphics programming is that a 16-bit pixel is represented as follows:

  bit | 15| 14| 13| 12| 11| 10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1  | 0 |
      |       Blue        |         Green         |       Red          |

To get at the green value you would do this:

 #define GREEN_MASK  0x7E0
 #define GREEN_OFFSET  5

 // Read green
 uint16_t green = (pixel & GREEN_MASK) >> GREEN_OFFSET;

Explanation

In order to obtain the value of green ONLY, which starts at offset 5 and ends at 10 (i.e. 6-bits long), you need to use a (bit) mask, which when applied against the entire 16-bit pixel, will yield only the bits we are interested in.

#define GREEN_MASK  0x7E0

The appropriate mask is 0x7E0 which in binary is 0000011111100000 (which is 2016 in decimal).

uint16_t green = (pixel & GREEN_MASK) ...;

To apply a mask, you use the AND operator (&).

uint16_t green = (pixel & GREEN_MASK) >> GREEN_OFFSET;

After applying the mask, you'll end up with a 16-bit number which is really just a 11-bit number since its MSB is in the 11th bit. Green is actually only 6-bits long, so we need to scale it down using a right shift (11 - 6 = 5), hence the use of 5 as offset (#define GREEN_OFFSET 5).

Also common is using bit shifts for fast multiplication and division by powers of 2:

 i <<= x;  // i *= 2^x;
 i >>= y;  // i /= 2^y;
终弃我 2024-07-12 12:11:54

假设我们有一个字节:

0110110

应用单个左移位可以得到:

1101100

最左边的零被移出字节,并且一个新的零被附加到字节的右端。

这些位不会翻转; 它们被丢弃。 这意味着如果您左移 1101100 然后右移,您将不会得到相同的结果。

左移 N 相当于乘以 2N

右移 N 是(如果您使用个数补码)相当于除法2N 并四舍五入到零。

位移位可用于极其快速的乘法和除法,前提是您使用的是 2 的幂。几乎所有低级图形例程都使用位移位。

例如,很久以前,我们在游戏中使用 13h 模式(320x200 256 色)。 在模式 13h 中,视频内存按像素顺序布局。 这意味着要计算像素的位置,您将使用以下数学公式:

memoryOffset = (row * 320) + column

现在,在那个时代,速度至关重要,因此我们将使用位移来执行此操作。

然而,320 不是 2 的幂,所以为了解决这个问题,我们必须找出 2 的幂加起来等于 320:

(row * 320) = (row * 256) + (row * 64)

现在我们可以将其转换为左移:

(row * 320) = (row << 8) + (row << 6)

对于最终结果:

memoryOffset = ((row << 8) + (row << 6)) + column

现在我们得到与以前相同的偏移量,除了使用两个位移位而不是昂贵的乘法运算...在 x86 中,它会是这样的(注意,自从我完成汇编以来,它已经永远存在了(编者注:纠正了几个错误)并添加了一个 32 位示例)):

mov ax, 320; 2 cycles
mul word [row]; 22 CPU Cycles
mov di,ax; 2 cycles
add di, [column]; 2 cycles
; di = [row]*320 + [column]

; 16-bit addressing mode limitations:
; [di] is a valid addressing mode, but [ax] isn't, otherwise we could skip the last mov

总计:在具有这些计时的任何古代 CPU 上有 28 个周期。

mov ax, [row]; 2 cycles
mov di, ax; 2
shl ax, 6;  2
shl di, 8;  2
add di, ax; 2    (320 = 256+64)
add di, [column]; 2
; di = [row]*(256+64) + [column]

在同一个古老的 CPU 上

12 个周期。 是的,我们会努力工作以减少 16 个 CPU 周期。

在 32 位或 64 位模式下,两个版本都变得更短、更快。 现代乱序执行 CPU,如 Intel Skylake(请参阅 http://agner.org/optimize/)有非常快的硬件乘法(低延迟和高吞吐量),因此增益要小得多。 AMD Bulldozer 系列有点慢,特别是对于 64 位乘法。 在 Intel CPU 和 AMD Ryzen 上,两次移位延迟稍低,但比乘法执行更多指令(这可能会导致吞吐量降低):

imul edi, [row], 320    ; 3 cycle latency from [row] being ready
add  edi, [column]      ; 1 cycle latency (from [column] and edi being ready).
; edi = [row]*(256+64) + [column],  in 4 cycles from [row] being ready.

vs.

mov edi, [row]
shl edi, 6               ; row*64.   1 cycle latency
lea edi, [edi + edi*4]   ; row*(64 + 64*4).  1 cycle latency
add edi, [column]        ; 1 cycle latency from edi and [column] both being ready
; edi = [row]*(256+64) + [column],  in 3 cycles from [row] being ready.

编译器会为您执行此操作:了解如何 GCC、Clang 和 Microsoft Visual C++在优化return 320*row + col;时都使用shift+lea。

这里要注意的最有趣的事情是 x86 有一个转变 - and-add 指令 (LEA),可以同时进行小幅左移和加法,其性能与 add 指令相同。 ARM 更强大:任何指令的一个操作数都可以自由左移或右移。 因此,按已知为 2 的幂的编译时间常数进行缩放甚至比乘法更有效。


好吧,回到现代……现在更有用的方法是使用位移位将两个 8 位值存储在 16 位整数中。 例如,在 C# 中:

// Byte1: 11110000
// Byte2: 00001111

Int16 value = ((byte)(Byte1 >> 8) | Byte2));

// value = 000011111110000;

在 C++ 中,如果您使用具有两个 8 位成员的 struct,编译器应该为您执行此操作,但实际上并非总是如此。

Let's say we have a single byte:

0110110

Applying a single left bitshift gets us:

1101100

The leftmost zero was shifted out of the byte, and a new zero was appended to the right end of the byte.

The bits don't rollover; they are discarded. That means if you left shift 1101100 and then right shift it, you won't get the same result back.

Shifting left by N is equivalent to multiplying by 2N.

Shifting right by N is (if you are using ones' complement) is the equivalent of dividing by 2N and rounding to zero.

Bitshifting can be used for insanely fast multiplication and division, provided you are working with a power of 2. Almost all low-level graphics routines use bitshifting.

For example, way back in the olden days, we used mode 13h (320x200 256 colors) for games. In Mode 13h, the video memory was laid out sequentially per pixel. That meant to calculate the location for a pixel, you would use the following math:

memoryOffset = (row * 320) + column

Now, back in that day and age, speed was critical, so we would use bitshifts to do this operation.

However, 320 is not a power of two, so to get around this we have to find out what is a power of two that added together makes 320:

(row * 320) = (row * 256) + (row * 64)

Now we can convert that into left shifts:

(row * 320) = (row << 8) + (row << 6)

For a final result of:

memoryOffset = ((row << 8) + (row << 6)) + column

Now we get the same offset as before, except instead of an expensive multiplication operation, we use the two bitshifts...in x86 it would be something like this (note, it's been forever since I've done assembly (editor's note: corrected a couple mistakes and added a 32-bit example)):

mov ax, 320; 2 cycles
mul word [row]; 22 CPU Cycles
mov di,ax; 2 cycles
add di, [column]; 2 cycles
; di = [row]*320 + [column]

; 16-bit addressing mode limitations:
; [di] is a valid addressing mode, but [ax] isn't, otherwise we could skip the last mov

Total: 28 cycles on whatever ancient CPU had these timings.

Vrs

mov ax, [row]; 2 cycles
mov di, ax; 2
shl ax, 6;  2
shl di, 8;  2
add di, ax; 2    (320 = 256+64)
add di, [column]; 2
; di = [row]*(256+64) + [column]

12 cycles on the same ancient CPU.

Yes, we would work this hard to shave off 16 CPU cycles.

In 32 or 64-bit mode, both versions get a lot shorter and faster. Modern out-of-order execution CPUs like Intel Skylake (see http://agner.org/optimize/) have very fast hardware multiply (low latency and high throughput), so the gain is much smaller. AMD Bulldozer-family is a bit slower, especially for 64-bit multiply. On Intel CPUs, and AMD Ryzen, two shifts are slightly lower latency but more instructions than a multiply (which may lead to lower throughput):

imul edi, [row], 320    ; 3 cycle latency from [row] being ready
add  edi, [column]      ; 1 cycle latency (from [column] and edi being ready).
; edi = [row]*(256+64) + [column],  in 4 cycles from [row] being ready.

vs.

mov edi, [row]
shl edi, 6               ; row*64.   1 cycle latency
lea edi, [edi + edi*4]   ; row*(64 + 64*4).  1 cycle latency
add edi, [column]        ; 1 cycle latency from edi and [column] both being ready
; edi = [row]*(256+64) + [column],  in 3 cycles from [row] being ready.

Compilers will do this for you: See how GCC, Clang, and Microsoft Visual C++ all use shift+lea when optimizing return 320*row + col;.

The most interesting thing to note here is that x86 has a shift-and-add instruction (LEA) that can do small left shifts and add at the same time, with the performance as an add instruction. ARM is even more powerful: one operand of any instruction can be left or right shifted for free. So scaling by a compile-time-constant that's known to be a power-of-2 can be even more efficient than a multiply.


OK, back in the modern days... something more useful now would be to use bitshifting to store two 8-bit values in a 16-bit integer. For example, in C#:

// Byte1: 11110000
// Byte2: 00001111

Int16 value = ((byte)(Byte1 >> 8) | Byte2));

// value = 000011111110000;

In C++, compilers should do this for you if you used a struct with two 8-bit members, but in practice they don't always.

━╋う一瞬間旳綻放 2024-07-12 12:11:54

位掩码和 移位

位移位通常用于低级图形编程。 例如,以 32 位字编码的给定像素颜色值。

 Pixel-Color Value in Hex:    B9B9B900
 Pixel-Color Value in Binary: 10111001  10111001  10111001  00000000

为了更好地理解,相同的二进制值标记了哪些部分代表什么颜色部分。

                                 Red     Green     Blue       Alpha
 Pixel-Color Value in Binary: 10111001  10111001  10111001  00000000

举例来说,我们想要获取该像素颜色的绿色值。 我们可以通过屏蔽移位轻松获得该值。

我们的掩码:

                  Red      Green      Blue      Alpha
 color :        10111001  10111001  10111001  00000000
 green_mask  :  00000000  11111111  00000000  00000000

 masked_color = color & green_mask

 masked_color:  00000000  10111001  00000000  00000000

逻辑 & 运算符确保仅保留掩码为 1 的值。 我们现在要做的最后一件事是通过将所有这些位向右移动 16 位来获得正确的整数值(逻辑右移)。

 green_value = masked_color >>> 16

这样,我们就有了表示像素颜色中绿色数量的整数:

 Pixels-Green Value in Hex:     000000B9
 Pixels-Green Value in Binary:  00000000 00000000 00000000 10111001
 Pixels-Green Value in Decimal: 185

这通常用于编码或解码图像格式,如 jpgpng 等。

Bit Masking & Shifting

Bit shifting is often used in low-level graphics programming. For example, a given pixel color value encoded in a 32-bit word.

 Pixel-Color Value in Hex:    B9B9B900
 Pixel-Color Value in Binary: 10111001  10111001  10111001  00000000

For better understanding, the same binary value labeled with what sections represent what color part.

                                 Red     Green     Blue       Alpha
 Pixel-Color Value in Binary: 10111001  10111001  10111001  00000000

Let's say for example we want to get the green value of this pixel's color. We can easily get that value by masking and shifting.

Our mask:

                  Red      Green      Blue      Alpha
 color :        10111001  10111001  10111001  00000000
 green_mask  :  00000000  11111111  00000000  00000000

 masked_color = color & green_mask

 masked_color:  00000000  10111001  00000000  00000000

The logical & operator ensures that only the values where the mask is 1 are kept. The last thing we now have to do, is to get the correct integer value by shifting all those bits to the right by 16 places (logical right shift).

 green_value = masked_color >>> 16

Et voilà, we have the integer representing the amount of green in the pixel's color:

 Pixels-Green Value in Hex:     000000B9
 Pixels-Green Value in Binary:  00000000 00000000 00000000 10111001
 Pixels-Green Value in Decimal: 185

This is often used for encoding or decoding image formats like jpg, png, etc.

游魂 2024-07-12 12:11:54

请注意,在 Java 实现中,要移位的位数按源的大小进行取模。

例如:

(long) 4 >> 65

等于 2。您可能期望将位向右移动 65 次会将所有内容清零,但实际上相当于:

(long) 4 >> (65 % 64)

对于 <<、>> 和 >>> 都是如此。 。 我还没有用其他语言尝试过。

Note that in the Java implementation, the number of bits to shift is mod'd by the size of the source.

For example:

(long) 4 >> 65

equals 2. You might expect shifting the bits to the right 65 times would zero everything out, but it's actually the equivalent of:

(long) 4 >> (65 % 64)

This is true for <<, >>, and >>>. I have not tried it out in other languages.

黎歌 2024-07-12 12:11:54

位运算符用于执行位级运算或以不同方式操作位。 人们发现按位运算要快得多,并且有时用于提高程序的效率。
基本上,位运算符可应用于整数类型:longintshortchar >字节

按位移位运算符

分为左移和右移两类。

  • 左移(<<):左移运算符将 value 中的所有位向左移动指定的次数。 语法:值 << 编号 这里num指定value中的值左移的位置数。 即,<< 将指定值中的所有位向左移动 num 指定的位数。 对于每次左移,高位被移出(并被忽略/丢失),并且在右侧引入零。 这意味着,当向 32 位编译器应用左移时,一旦移位超过位位置 31,位就会丢失。如果编译器是 64 位,则位位置 63 之后的位就会丢失。

在此处输入图像描述

输出:6,这里 3 的二进制表示是 0...0011(考虑 32 位系统),因此当它移位一次时,前导零将被忽略/丢失,其余所有 31 位向左移动。 并在末尾添加零。 于是就变成了0...0110,这个数字的十进制表示是6。

  • 负数的情况下:

负数代码

输出:-2,在java中负数,用2的补码表示。 SO,-1代表2^32-1,相当于1....11(考虑32位系统)。 当移位一次时,前导位将被忽略/丢失,其余 31 位将向左移位,最后添加零。 所以它变成了 11...10,它的十进制等值是 -2。
所以,我认为您对左移及其工作原理有了足够的了解。

  • 右移(>>):右移运算符将 value 中的所有位向右移动指定的次数。 语法:值>> num,num指定value中的值右移的位数。 即,>> 将指定值中的所有位向右移动/移位 num 指定的位数。
    以下代码片段将值 35 向右移动两个位置:

在此处输入图像描述

输出:8,在 32 位系统中 35 的二进制表示为 00... 00100011,所以当我们右移两次时,前 30 个前导位被移动/移位到右侧,两个低位被丢失/忽略,并在前导位添加两个零。 所以,它变成了 00....00001000,这个二进制表示的十进制相当于 8。
或者有一个简单的数学技巧来找出以下代码的输出:为了概括这一点,我们可以说,x>>> y = 下限(x/pow(2,y))。 考虑上面的示例,x=35 和 y=2,因此 35/2^2 = 8.75,如果我们采用下限值,则答案为 8。

在此处输入图像描述

输出:

在此处输入图像描述

但请记住一件事,这个技巧对于较小的 y 值来说是很好的,如果你采用较大的 y 值,它会给出不正确的输出。

  • 负数的情况:
    由于负数,右移运算符以有符号和无符号两种模式工作。 在有符号右移运算符(>>)中,如果是正数,则用 0 填充前导位。如果是负数,则用 1 填充前导位。以保留符号。 这称为“符号扩展”。

输入图像描述这里

输出:-5,正如我上面所解释的,编译器将负值存储为 2 的补码。 因此,-10 表示为 2^32-10,并以二进制表示形式考虑 32 位系统 11....0110。 当我们移位/移动一次时,前 31 个前导位被移位到右侧,而低位被丢失/忽略。 因此,它变成 11...0011,这个数字的十进制表示形式是 -5(我如何知道数字的符号?因为前导位是 1)。
有趣的是,如果右移 -1,结果始终保持 -1,因为符号扩展不断在高位中引入更多的值。

  • 无符号右移(>>):此运算符还将位向右移动。 有符号和无符号之间的区别在于,如果数字为负数,则后者将前导位填充为 1,而前者在任何情况下都将前导位填充为零。 现在的问题是,如果我们通过有符号右移运算符获得所需的输出,为什么我们需要无符号右运算。 通过一个例子来理解这一点,如果您要移动不代表数值的内容,您可能不希望发生符号扩展。 当您使用基于像素的值和图形时,这种情况很常见。 在这些情况下,您通常希望将零移入高位,无论初始值是什么。

输入图片描述这里

输出:2147483647,因为-2在32位系统中表示为11...10。 当我们将位移一位时,前 31 位前导位向右移动/右移,低位被丢失/忽略,并且将零添加到前导位。 因此,它变为 011...1111 (2^31-1),其十进制等效值为 2147483647。

The Bitwise operators are used to perform operations a bit-level or to manipulate bits in different ways. The bitwise operations are found to be much faster and are some times used to improve the efficiency of a program.
Basically, Bitwise operators can be applied to the integer types: long, int, short, char and byte.

Bitwise Shift Operators

They are classified into two categories left shift and the right shift.

  • Left Shift(<<): The left shift operator, shifts all of the bits in value to the left a specified number of times. Syntax: value << num. Here num specifies the number of position to left-shift the value in value. That is, the << moves all of the bits in the specified value to the left by the number of bit positions specified by num. For each shift left, the high-order bit is shifted out (and ignored/lost), and a zero is brought in on the right. This means that when a left shift is applied to 32-bit compiler, bits are lost once they are shifted past bit position 31. If the compiler is of 64-bit then bits are lost after bit position 63.

enter image description here

Output: 6, Here the binary representation of 3 is 0...0011(considering 32-bit system) so when it shifted one time the leading zero is ignored/lost and all the rest 31 bits shifted to left. And zero is added at the end. So it became 0...0110, the decimal representation of this number is 6.

  • In the case of a negative number:

Code for Negative number.

Output: -2, In java negative number, is represented by 2's complement. SO, -1 represent by 2^32-1 which is equivalent to 1....11(Considering 32-bit system). When shifted one time the leading bit is ignored/lost and the rest 31 bits shifted to left and zero is added at the last. So it becomes, 11...10 and its decimal equivalent is -2.
So, I think you get enough knowledge about the left shift and how its work.

  • Right Shift(>>): The right shift operator, shifts all of the bits in value to the right a specified of times. Syntax: value >> num, num specifies the number of positions to right-shift the value in value. That is, the >> moves/shift all of the bits in the specified value of the right the number of bit positions specified by num.
    The following code fragment shifts the value 35 to the right by two positions:

enter image description here

Output: 8, As a binary representation of 35 in a 32-bit system is 00...00100011, so when we right shift it two times the first 30 leading bits are moved/shifts to the right side and the two low-order bits are lost/ignored and two zeros are added at the leading bits. So, it becomes 00....00001000, the decimal equivalent of this binary representation is 8.
Or there is a simple mathematical trick to find out the output of this following code: To generalize this we can say that, x >> y = floor(x/pow(2,y)). Consider the above example, x=35 and y=2 so, 35/2^2 = 8.75 and if we take the floor value then the answer is 8.

enter image description here

Output:

enter image description here

But remember one thing this trick is fine for small values of y if you take the large values of y it gives you incorrect output.

  • In the case of a negative number:
    Because of the negative numbers the Right shift operator works in two modes signed and unsigned. In signed right shift operator (>>), In case of a positive number, it fills the leading bits with 0. And In case of a negative number, it fills leading bits with 1. To keep the sign. This is called 'sign extension'.

enter image description here

Output: -5, As I explained above the compiler stores the negative value as 2's complement. So, -10 is represented as 2^32-10 and in binary representation considering 32-bit system 11....0110. When we shift/ move one time the first 31 leading bits got shifted in the right side and the low-order bit got lost/ignored. So, it becomes 11...0011 and the decimal representation of this number is -5 (How I know the sign of number? because the leading bit is 1).
It is interesting to note that if you shift -1 right, the result always remains -1 since sign extension keeps bringing in more ones in the high-order bits.

  • Unsigned Right Shift(>>>): This operator also shifts bits to the right. The difference between signed and unsigned is the latter fills the leading bits with 1 if the number is negative and the former fills zero in either case. Now the question arises why we need unsigned right operation if we get the desired output by signed right shift operator. Understand this with an example, If you are shifting something that does not represent a numeric value, you may not want sign extension to take place. This situation is common when you are working with pixel-based values and graphics. In these cases, you will generally want to shift a zero into the high-order bit no matter what it's the initial value was.

enter image description here

Output: 2147483647, Because -2 is represented as 11...10 in a 32-bit system. When we shift the bit by one, the first 31 leading bit is moved/shifts in right and the low-order bit is lost/ignored and the zero is added to the leading bit. So, it becomes 011...1111 (2^31-1) and its decimal equivalent is 2147483647.

短暂陪伴 2024-07-12 12:11:54

一个问题是以下内容取决于实现(根据 ANSI 标准):

char x = -1;
x >> 1;

x 现在可以是 127 (01111111) 或仍然是 -1 (11111111)。

实际上,通常是后者。

One gotcha is that the following is implementation dependent (according to the ANSI standard):

char x = -1;
x >> 1;

x can now be 127 (01111111) or still -1 (11111111).

In practice, it's usually the latter.

奢望 2024-07-12 12:11:54

我只写提示和技巧。 它可能在测试和考试中有用。

  1. n = n*2n = n<<1
  2. n = n/2n = n>>1
  3. 检查 n 是否为 2 的幂 (1,2,4,8,...):检查 !(n & (n-1))
  4. 获取 x< /em>n 位:n |= (1 << x)
  5. 检查 x 是偶数还是奇数:x&1 == 0(偶数)
  6. 切换 x 的第 nth 位:x ^ (1<

I am writing tips and tricks only. It may be useful in tests and exams.

  1. n = n*2: n = n<<1
  2. n = n/2: n = n>>1
  3. Checking if n is power of 2 (1,2,4,8,...): check !(n & (n-1))
  4. Getting xth bit of n: n |= (1 << x)
  5. Checking if x is even or odd: x&1 == 0 (even)
  6. Toggle the nth bit of x: x ^ (1<<n)
携余温的黄昏 2024-07-12 12:11:54

希望有人发现我制作的这个十进制到二进制字符串可视化工具有助于理解位操作运算符如何通过算术与基数转换相关:

输入任何无符号整数 直到2^53 - 1,它都会生成

  1. 二进制字符串的代数版本,可以直接送入bc 、Wolfram Alpha,很可能还有 Excel(尚未测试),以及

  2. 纯粹的位操作版本只是一系列按位或与移位配对,可以直接输入到 C/Perl 代码中。

-- 注意:在代数字符串中,二进制字符串以大端 MSB 在前表示法显示,而位移字符串则以小端法 LSB 在前表示法显示。

-- 注意:出于视觉清晰度的目的,零已被删除。


function rev(__,_,___) {

    (_ = length(__ = (___ = _ = "")__)) % length("__") &&
   ___ = substr(__, _--)

   do ___ = ___ substr(__,_,
         _>--_) substr(__,_,_>--_)
   while(_)

   return ___
}
function dec2bin_visualizer(__,_) {

    return length(__ = (_ = "")__) <= ++_*_++ &&
                      (__ = __+!_) <= _ \
    ? (__)"\n"(__<_-- ? __ : (_)"<<"(_)) : \
    (__ = (_ = index(__ = sprintf(\
         (_=(_ =   "2*(" )(_ = (_)_ (_)_) (_)_)_ (_)_ \
         (_=(_ = "%+1.d)")(_ = (_)_ (_)_) (_)_)_ (_)_ "%+.d",
    _ = int(__/= (_ += ++_)^(_^_^_+(_+_+_)^_)),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),
    _ = int(__+=__-=_)), "(+")) \
    ? substr(__,!!_,_++) substr(__,++_) \
    : substr((__)"", (__ = substr(__, index(__, ++_)))^!_,
      (_ + ++_) * gsub("[)]", "&", __))__) "\n" \
    substr(_ = "", (__ = rev(__))^_,
                   -gsub("[(][*][2]",
     _ = "_", __) * gsub("[)]",
         "(", __) * gsub(_,
      ")<<1", __) * gsub("1[+]",
        "1|", __) * gsub(" +",_ = "", __)) ("\n")__
 }

 1  57885161
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1)+1)+1) ) )+1)+1) )+1) ) ) ) ) )+1)+1)+1)+1) )+1) ) )+1
    1|(((1|((1|(1|(1|(1|((((((1|((1|(1|(((1|(1|(1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 2  43112609
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) ) )+1) ) ) )+1)+1)+1) )+1)+1) ) ) )+1) )+1) ) ) ) )+1
    1|(((((1|((1|((((1|(1|((1|(1|(1|((((1|(((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 3  42643801
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) ) ) )+1) )+1) )+1) )+1)+1) ) ) )+1) )+1) )+1)+1) ) )+1
    1|(((1|(1|((1|((1|((((1|(1|((1|((1|((1|((((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 4  37156667
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) )+1)+1) )+1)+1) )+1)+1)+1)+1) )+1)+1)+1) ) )+1)+1)+1) )+1)+1
    1|(1|((1|(1|(1|(((1|(1|(1|((1|(1|(1|(1|((1|(1|((1|(1|((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 5  32582657
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1)+1)+1)+1) ) ) )+1) ) )+1) )+1)+1) ) ) ) ) ) ) ) ) )+1
    1|((((((((((1|(1|((1|(((1|((((1|(1|(1|(1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
 6  30402457
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1)+1) ) )+1)+1)+1)+1)+1)+1)+1) ) )+1)+1)+1)+1) ) )+1)+1) ) )+1
    1|(((1|(1|(((1|(1|(1|(1|(((1|(1|(1|(1|(1|(1|(1|(((1|(1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 7  25964951
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) ) ) )+1)+1) ) ) ) )+1)+1) ) ) )+1)+1) ) )+1) )+1)+1)+1
    1|(1|(1|((1|(((1|(1|((((1|(1|(((((1|(1|((((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 8  24036583
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1) )+1)+1)+1) )+1)+1) ) ) )+1) ) )+1)+1)+1) ) )+1)+1)+1
    1|(1|(1|(((1|(1|(1|(((1|((((1|(1|((1|(1|(1|((1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 9  20996011
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) ) ) ) ) ) ) )+1) )+1)+1)+1)+1)+1)+1) )+1) )+1) )+1)+1
    1|(1|((1|((1|((1|(1|(1|(1|(1|(1|((1|((((((((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

10  13466917
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) ) )+1)+1) )+1) )+1)+1)+1)+1)+1) )+1) ) )+1) ) )+1) )+1
    1|((1|(((1|(((1|((1|(1|(1|(1|(1|((1|((1|(1|(((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
11  6972593
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1) )+1) ) )+1)+1) ) )+1) ) )+1) )+1)+1) ) ) )+1
    1|((((1|(1|((1|(((1|(((1|(1|(((1|((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

12  3021377
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1)+1) ) ) ) )+1)+1) )+1) ) )+1) ) ) ) ) )+1
    1|((((((1|(((1|((1|(1|(((((1|(1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

13  2976221
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1) )+1) )+1)+1) )+1) ) )+1)+1)+1) )+1)+1)+1) )+1
    1|((1|(1|(1|((1|(1|(1|(((1|((1|(1|((1|((1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

14  1398269
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1) )+1) )+1) )+1) )+1)+1)+1)+1)+1)+1)+1) )+1
    1|((1|(1|(1|(1|(1|(1|(1|((1|((1|((1|((1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

15  1257787
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1)+1) ) )+1)+1) ) ) )+1) ) )+1)+1)+1) )+1)+1
    1|(1|((1|(1|(1|(((1|((((1|(1|(((1|(1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
16  859433
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1) ) ) )+1)+1)+1) )+1) ) )+1) )+1) ) )+1
    1|(((1|((1|(((1|((1|(1|(1|((((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

17  756839
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1)+1) ) ) )+1)+1) ) ) )+1)+1) ) )+1)+1)+1
    1|(1|(1|(((1|(1|((((1|(1|((((1|(1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

18  216091
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1) ) )+1)+1) ) ) ) ) )+1)+1) )+1)+1
    1|(1|((1|(1|((((((1|(1|(((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

19  132049
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) ) ) ) ) )+1)+1)+1)+1) )+1) ) ) )+1
    1|((((1|((1|(1|(1|(1|((((((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

20  110503
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1) )+1)+1)+1)+1)+1) )+1) ) )+1)+1)+1
    1|(1|(1|(((1|((1|(1|(1|(1|(1|((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
21  86243
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1) ) ) ) )+1)+1)+1) ) ) )+1)+1
    1|(1|((((1|(1|(1|(((((1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

22  44497
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1)+1) )+1)+1)+1) )+1) ) ) )+1
    1|((((1|((1|(1|(1|((1|(1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

23  23209
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1) )+1) )+1) )+1) )+1) ) )+1
    1|(((1|((1|((1|((1|((1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

24  21701
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1) ) )+1)+1) ) ) )+1) )+1
    1|((1|((((1|(1|(((1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

25  19937
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1)+1) )+1)+1)+1)+1) ) ) ) )+1
    1|(((((1|(1|(1|(1|((1|(1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
26  11213
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1)+1)+1)+1) ) )+1)+1) )+1
    1|((1|(1|(((1|(1|(1|(1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

27  9941
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1)+1) )+1)+1) )+1) )+1) )+1
    1|((1|((1|((1|(1|((1|(1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

28  9689
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1) )+1)+1)+1) )+1)+1) ) )+1
    1|(((1|(1|((1|(1|(1|((1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

29  4423
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) )+1) )+1) ) ) )+1)+1)+1
    1|(1|(1|((((1|((1|((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

30  4253
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) ) )+1) ) )+1)+1)+1) )+1
    1|((1|(1|(1|(((1|(((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
31  3217
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) ) )+1) ) )+1) ) ) )+1
    1|((((1|(((1|(((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

32  2281
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) )+1)+1)+1) )+1) ) )+1
    1|(((1|((1|(1|(1|((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

33  2203
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) )+1) ) )+1)+1) )+1)+1
    1|(1|((1|(1|(((1|((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

34  1279
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1)+1)+1)+1)+1)+1)+1)+1
    1|(1|(1|(1|(1|(1|(1|(1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

35  607
    2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1) )+1)+1)+1)+1)+1
    1|(1|(1|(1|(1|((1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
36  521
    2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) ) ) )+1) ) )+1
    1|(((1|((((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

37  127
    2*(2*(2*(2*(2*(2*(1)+1)+1)+1)+1)+1)+1
    1|(1|(1|(1|(1|(1|(1)<<1)<<1)<<1)<<1)<<1)<<1

38  107
    2*(2*(2*(2*(2*(2*(1)+1) )+1) )+1)+1
    1|(1|((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1

39  89
    2*(2*(2*(2*(2*(2*(1) )+1)+1) ) )+1
    1|(((1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1

40  61
    2*(2*(2*(2*(2*(1)+1)+1)+1) )+1
    1|((1|(1|(1|(1)<<1)<<1)<<1)<<1)<<1
41  31
    2*(2*(2*(2*(1)+1)+1)+1)+1
    1|(1|(1|(1|(1)<<1)<<1)<<1)<<1

42  19
    2*(2*(2*(2*(1) ) )+1)+1
    1|(1|(((1)<<1)<<1)<<1)<<1

43  17
    2*(2*(2*(2*(1) ) ) )+1
    1|((((1)<<1)<<1)<<1)<<1

44  13
    2*(2*(2*(1)+1) )+1
    1|((1|(1)<<1)<<1)<<1

45  7
    2*(2*(1)+1)+1
    1|(1|(1)<<1)<<1
46  5
    2*(2*(1) )+1
    1|((1)<<1)<<1

47  3
    2*(1)+1
    1|(1)<<1

48  2
    2
    1<<1

Hopefully some find this decimal-to-binary-string visualizer I made to be helpful in understanding how bit manipulation operators relate to base conversion via arithmetic :

Feeding in any unsigned int up to 2^53 - 1, it would generate both

  1. The algebraic version of the binary string, which can be directly fed into bc, Wolfram Alpha, most likely Excel too (haven't tested it), as well as

  2. The purely bit manipulation version that's simply a series of bitwise OR paired with bit-shifts, which can be directly fed into C/Perl codes.

-- Note : in the algebraic one, the binary string is shown in big-endian MSB first notation, while the bit-shifting one is in little-endian LSB first.

-- Note : for visual clarity purposes, zeros have been blanked out.


function rev(__,_,___) {

    (_ = length(__ = (___ = _ = "")__)) % length("__") &&
   ___ = substr(__, _--)

   do ___ = ___ substr(__,_,
         _>--_) substr(__,_,_>--_)
   while(_)

   return ___
}
function dec2bin_visualizer(__,_) {

    return length(__ = (_ = "")__) <= ++_*_++ &&
                      (__ = __+!_) <= _ \
    ? (__)"\n"(__<_-- ? __ : (_)"<<"(_)) : \
    (__ = (_ = index(__ = sprintf(\
         (_=(_ =   "2*(" )(_ = (_)_ (_)_) (_)_)_ (_)_ \
         (_=(_ = "%+1.d)")(_ = (_)_ (_)_) (_)_)_ (_)_ "%+.d",
    _ = int(__/= (_ += ++_)^(_^_^_+(_+_+_)^_)),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),_ = int(__+=__-=_),_ = int(__+=__-=_),
    _ = int(__+=__-=_),
    _ = int(__+=__-=_)), "(+")) \
    ? substr(__,!!_,_++) substr(__,++_) \
    : substr((__)"", (__ = substr(__, index(__, ++_)))^!_,
      (_ + ++_) * gsub("[)]", "&", __))__) "\n" \
    substr(_ = "", (__ = rev(__))^_,
                   -gsub("[(][*][2]",
     _ = "_", __) * gsub("[)]",
         "(", __) * gsub(_,
      ")<<1", __) * gsub("1[+]",
        "1|", __) * gsub(" +",_ = "", __)) ("\n")__
 }

 1  57885161
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1)+1)+1) ) )+1)+1) )+1) ) ) ) ) )+1)+1)+1)+1) )+1) ) )+1
    1|(((1|((1|(1|(1|(1|((((((1|((1|(1|(((1|(1|(1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 2  43112609
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) ) )+1) ) ) )+1)+1)+1) )+1)+1) ) ) )+1) )+1) ) ) ) )+1
    1|(((((1|((1|((((1|(1|((1|(1|(1|((((1|(((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 3  42643801
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) ) ) )+1) )+1) )+1) )+1)+1) ) ) )+1) )+1) )+1)+1) ) )+1
    1|(((1|(1|((1|((1|((((1|(1|((1|((1|((1|((((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 4  37156667
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) )+1)+1) )+1)+1) )+1)+1)+1)+1) )+1)+1)+1) ) )+1)+1)+1) )+1)+1
    1|(1|((1|(1|(1|(((1|(1|(1|((1|(1|(1|(1|((1|(1|((1|(1|((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 5  32582657
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1)+1)+1)+1) ) ) )+1) ) )+1) )+1)+1) ) ) ) ) ) ) ) ) )+1
    1|((((((((((1|(1|((1|(((1|((((1|(1|(1|(1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
 6  30402457
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1)+1) ) )+1)+1)+1)+1)+1)+1)+1) ) )+1)+1)+1)+1) ) )+1)+1) ) )+1
    1|(((1|(1|(((1|(1|(1|(1|(((1|(1|(1|(1|(1|(1|(1|(((1|(1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 7  25964951
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) ) ) )+1)+1) ) ) ) )+1)+1) ) ) )+1)+1) ) )+1) )+1)+1)+1
    1|(1|(1|((1|(((1|(1|((((1|(1|(((((1|(1|((((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 8  24036583
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1) )+1)+1)+1) )+1)+1) ) ) )+1) ) )+1)+1)+1) ) )+1)+1)+1
    1|(1|(1|(((1|(1|(1|(((1|((((1|(1|((1|(1|(1|((1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

 9  20996011
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) ) ) ) ) ) ) )+1) )+1)+1)+1)+1)+1)+1) )+1) )+1) )+1)+1
    1|(1|((1|((1|((1|(1|(1|(1|(1|(1|((1|((((((((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

10  13466917
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) ) )+1)+1) )+1) )+1)+1)+1)+1)+1) )+1) ) )+1) ) )+1) )+1
    1|((1|(((1|(((1|((1|(1|(1|(1|(1|((1|((1|(1|(((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
11  6972593
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1) )+1) ) )+1)+1) ) )+1) ) )+1) )+1)+1) ) ) )+1
    1|((((1|(1|((1|(((1|(((1|(1|(((1|((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

12  3021377
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1)+1) ) ) ) )+1)+1) )+1) ) )+1) ) ) ) ) )+1
    1|((((((1|(((1|((1|(1|(((((1|(1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

13  2976221
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1) )+1) )+1)+1) )+1) ) )+1)+1)+1) )+1)+1)+1) )+1
    1|((1|(1|(1|((1|(1|(1|(((1|((1|(1|((1|((1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

14  1398269
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1) )+1) )+1) )+1) )+1)+1)+1)+1)+1)+1)+1) )+1
    1|((1|(1|(1|(1|(1|(1|(1|((1|((1|((1|((1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

15  1257787
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1)+1) ) )+1)+1) ) ) )+1) ) )+1)+1)+1) )+1)+1
    1|(1|((1|(1|(1|(((1|((((1|(1|(((1|(1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
16  859433
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1) ) ) )+1)+1)+1) )+1) ) )+1) )+1) ) )+1
    1|(((1|((1|(((1|((1|(1|(1|((((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

17  756839
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1)+1) ) ) )+1)+1) ) ) )+1)+1) ) )+1)+1)+1
    1|(1|(1|(((1|(1|((((1|(1|((((1|(1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

18  216091
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1) ) )+1)+1) ) ) ) ) )+1)+1) )+1)+1
    1|(1|((1|(1|((((((1|(1|(((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

19  132049
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) ) ) ) ) )+1)+1)+1)+1) )+1) ) ) )+1
    1|((((1|((1|(1|(1|(1|((((((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

20  110503
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) )+1) )+1)+1)+1)+1)+1) )+1) ) )+1)+1)+1
    1|(1|(1|(((1|((1|(1|(1|(1|(1|((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
21  86243
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1) ) ) ) )+1)+1)+1) ) ) )+1)+1
    1|(1|((((1|(1|(1|(((((1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

22  44497
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1)+1) )+1)+1)+1) )+1) ) ) )+1
    1|((((1|((1|(1|(1|((1|(1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

23  23209
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1)+1) )+1) )+1) )+1) )+1) ) )+1
    1|(((1|((1|((1|((1|((1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

24  21701
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1) ) )+1)+1) ) ) )+1) )+1
    1|((1|((((1|(1|(((1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

25  19937
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1)+1) )+1)+1)+1)+1) ) ) ) )+1
    1|(((((1|(1|(1|(1|((1|(1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
26  11213
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) )+1) )+1)+1)+1)+1) ) )+1)+1) )+1
    1|((1|(1|(((1|(1|(1|(1|((1|((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

27  9941
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1)+1) )+1)+1) )+1) )+1) )+1
    1|((1|((1|((1|(1|((1|(1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

28  9689
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1) )+1)+1)+1) )+1)+1) ) )+1
    1|(((1|(1|((1|(1|(1|((1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

29  4423
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) )+1) )+1) ) ) )+1)+1)+1
    1|(1|(1|((((1|((1|((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

30  4253
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) ) )+1) ) )+1)+1)+1) )+1
    1|((1|(1|(1|(((1|(((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
31  3217
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1)+1) ) )+1) ) )+1) ) ) )+1
    1|((((1|(((1|(((1|(1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

32  2281
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) )+1)+1)+1) )+1) ) )+1
    1|(((1|((1|(1|(1|((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

33  2203
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) )+1) ) )+1)+1) )+1)+1
    1|(1|((1|(1|(((1|((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

34  1279
    2*(2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1)+1)+1)+1)+1)+1)+1)+1
    1|(1|(1|(1|(1|(1|(1|(1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

35  607
    2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) )+1) )+1)+1)+1)+1)+1
    1|(1|(1|(1|(1|((1|(((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1
36  521
    2*(2*(2*(2*(2*(2*(2*(2*(2*(1) ) ) ) ) )+1) ) )+1
    1|(((1|((((((1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1)<<1

37  127
    2*(2*(2*(2*(2*(2*(1)+1)+1)+1)+1)+1)+1
    1|(1|(1|(1|(1|(1|(1)<<1)<<1)<<1)<<1)<<1)<<1

38  107
    2*(2*(2*(2*(2*(2*(1)+1) )+1) )+1)+1
    1|(1|((1|((1|(1)<<1)<<1)<<1)<<1)<<1)<<1

39  89
    2*(2*(2*(2*(2*(2*(1) )+1)+1) ) )+1
    1|(((1|(1|((1)<<1)<<1)<<1)<<1)<<1)<<1

40  61
    2*(2*(2*(2*(2*(1)+1)+1)+1) )+1
    1|((1|(1|(1|(1)<<1)<<1)<<1)<<1)<<1
41  31
    2*(2*(2*(2*(1)+1)+1)+1)+1
    1|(1|(1|(1|(1)<<1)<<1)<<1)<<1

42  19
    2*(2*(2*(2*(1) ) )+1)+1
    1|(1|(((1)<<1)<<1)<<1)<<1

43  17
    2*(2*(2*(2*(1) ) ) )+1
    1|((((1)<<1)<<1)<<1)<<1

44  13
    2*(2*(2*(1)+1) )+1
    1|((1|(1)<<1)<<1)<<1

45  7
    2*(2*(1)+1)+1
    1|(1|(1)<<1)<<1
46  5
    2*(2*(1) )+1
    1|((1)<<1)<<1

47  3
    2*(1)+1
    1|(1)<<1

48  2
    2
    1<<1
镜花水月 2024-07-12 12:11:54

Python 中一些有用的位运算/操作。

我实现了 Ravi Prakash 的用 Python 回答

# Basic bit operations
# Integer to binary
print(bin(10))

# Binary to integer
print(int('1010', 2))

# Multiplying x with 2 .... x**2 == x << 1
print(200 << 1)

# Dividing x with 2 .... x/2 == x >> 1
print(200 >> 1)

# Modulo x with 2 .... x % 2 == x & 1
if 20 & 1 == 0:
    print("20 is a even number")

# Check if n is power of 2: check !(n & (n-1))
print(not(33 & (33-1)))

# Getting xth bit of n: (n >> x) & 1
print((10 >> 2) & 1) # Bin of 10 == 1010 and second bit is 0

# Toggle nth bit of x : x^(1 << n)
# take bin(10) == 1010 and toggling second bit in bin(10) we get 1110 === bin(14)
print(10^(1 << 2))

Some useful bit operations/manipulations in Python.

I implemented Ravi Prakash's answer in Python.

# Basic bit operations
# Integer to binary
print(bin(10))

# Binary to integer
print(int('1010', 2))

# Multiplying x with 2 .... x**2 == x << 1
print(200 << 1)

# Dividing x with 2 .... x/2 == x >> 1
print(200 >> 1)

# Modulo x with 2 .... x % 2 == x & 1
if 20 & 1 == 0:
    print("20 is a even number")

# Check if n is power of 2: check !(n & (n-1))
print(not(33 & (33-1)))

# Getting xth bit of n: (n >> x) & 1
print((10 >> 2) & 1) # Bin of 10 == 1010 and second bit is 0

# Toggle nth bit of x : x^(1 << n)
# take bin(10) == 1010 and toggling second bit in bin(10) we get 1110 === bin(14)
print(10^(1 << 2))
等你爱我 2024-07-12 12:11:54

请注意,Windows 平台上仅提供 32 位版本的 PHP。

那么如果你例如转移 << 或>> 超过 31 位,结果是不可预期的。 通常会返回原始数字而不是零,这可能是一个非常棘手的错误。

当然,如果您使用 64 位版本的 PHP (Unix),则应避免移位超过 63 位。 不过,比如MySQL使用的是64位BIGINT,所以应该不会有任何兼容性问题。

更新:从 PHP 7 Windows 开始,PHP 构建终于能够使用完整的 64 位整数:
整数的大小取决于平台,但通常的最大值约为 20 亿(即 32 位有符号)。 64 位平台的最大值通常约为 9E18,但 PHP 7 之前的 Windows 上的最大值始终为 32 位。

Be aware of that only 32 bit version of PHP is available on the Windows platform.

Then if you for instance shift << or >> more than by 31 bits, results are unexpectable. Usually the original number instead of zeros will be returned, and it can be a really tricky bug.

Of course if you use 64 bit version of PHP (Unix), you should avoid shifting by more than 63 bits. However, for instance, MySQL uses the 64-bit BIGINT, so there should not be any compatibility problems.

UPDATE: From PHP 7 Windows, PHP builds are finally able to use full 64 bit integers:
The size of an integer is platform-dependent, although a maximum value of about two billion is the usual value (that's 32 bits signed). 64-bit platforms usually have a maximum value of about 9E18, except on Windows prior to PHP 7, where it was always 32 bit.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文