贝塞尔曲线上的等距点

发布于 2024-07-05 02:59:22 字数 162 浏览 8 评论 0原文

目前,我正在尝试使多个贝塞尔曲线具有等距点。 我目前正在使用三次插值来查找点,但由于贝塞尔曲线的工作方式,某些区域比其他区域更密集,并且由于距离可变而导致纹理映射变得粗糙。 有没有办法通过距离而不是百分比来查找贝塞尔曲线上的点? 此外,是否可以将其扩展到多条连接的曲线?

Currently, I'm attempting to make multiple beziers have equidistant points. I'm currently using cubic interpolation to find the points, but because the way beziers work some areas are more dense than others and proving gross for texture mapping because of the variable distance. Is there a way to find points on a bezier by distance rather than by percentage? Furthermore, is it possible to extend this to multiple connected curves?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

蔚蓝源自深海 2024-07-12 02:59:23

我知道这是一个老问题,但我最近遇到了这个问题,并创建了一个 UIBezierPath 扩展来解决给定 Y 坐标的 X 坐标反之亦然。 写得很快。

https://github.com/rkotzy/RKBezierMath

extension UIBezierPath {

func solveBezerAtY(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, y: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.y - y
    let C1 = point1.y - y
    let C2 = point2.y - y
    let C3 = end.y - y

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result
}

func solveBezerAtX(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, x: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.x - x
    let C1 = point1.x - x
    let C2 = point2.x - x
    let C3 = end.x - x

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result

}

func solveCubic(a: CGFloat?, var b: CGFloat, var c: CGFloat, var d: CGFloat) -> [CGFloat] {

    if (a == nil) {
        return solveQuadratic(b, b: c, c: d)
    }

    b /= a!
    c /= a!
    d /= a!

    let p = (3 * c - b * b) / 3
    let q = (2 * b * b * b - 9 * b * c + 27 * d) / 27

    if (p == 0) {
        return [pow(-q, 1 / 3)]

    } else if (q == 0) {
        return [sqrt(-p), -sqrt(-p)]

    } else {

        let discriminant = pow(q / 2, 2) + pow(p / 3, 3)

        if (discriminant == 0) {
            return [pow(q / 2, 1 / 3) - b / 3]

        } else if (discriminant > 0) {
            let x = crt(-(q / 2) + sqrt(discriminant))
            let z = crt((q / 2) + sqrt(discriminant))
            return [x - z - b / 3]
        } else {

            let r = sqrt(pow(-(p/3), 3))
            let phi = acos(-(q / (2 * sqrt(pow(-(p / 3), 3)))))

            let s = 2 * pow(r, 1/3)

            return [
                s * cos(phi / 3) - b / 3,
                s * cos((phi + CGFloat(2) * CGFloat(M_PI)) / 3) - b / 3,
                s * cos((phi + CGFloat(4) * CGFloat(M_PI)) / 3) - b / 3
            ]

        }

    }
}

func solveQuadratic(a: CGFloat, b: CGFloat, c: CGFloat) -> [CGFloat] {

    let discriminant = b * b - 4 * a * c;

    if (discriminant < 0) {
        return []

    } else {
        return [
            (-b + sqrt(discriminant)) / (2 * a),
            (-b - sqrt(discriminant)) / (2 * a)
        ]
    }

}

private func crt(v: CGFloat) -> CGFloat {
    if (v<0) {
        return -pow(-v, 1/3)
    }
    return pow(v, 1/3)
}

private func bezierOutputAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGPoint {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)
    let D = C0

    return CGPointMake(((A.x*t+B.x)*t+C.x)*t+D.x, ((A.y*t+B.y)*t+C.y)*t+D.y)
}

// TODO: - future implementation
private func tangentAngleAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGFloat {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)

    return atan2(3.0*A.y*t*t + 2.0*B.y*t + C.y, 3.0*A.x*t*t + 2.0*B.x*t + C.x)
}

}

I know this is an old question but I recently ran into this problem and created a UIBezierPath extention to solve for an X coordinate given a Y coordinate and vise versa. Written in swift.

https://github.com/rkotzy/RKBezierMath

extension UIBezierPath {

func solveBezerAtY(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, y: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.y - y
    let C1 = point1.y - y
    let C2 = point2.y - y
    let C3 = end.y - y

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result
}

func solveBezerAtX(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, x: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.x - x
    let C1 = point1.x - x
    let C2 = point2.x - x
    let C3 = end.x - x

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result

}

func solveCubic(a: CGFloat?, var b: CGFloat, var c: CGFloat, var d: CGFloat) -> [CGFloat] {

    if (a == nil) {
        return solveQuadratic(b, b: c, c: d)
    }

    b /= a!
    c /= a!
    d /= a!

    let p = (3 * c - b * b) / 3
    let q = (2 * b * b * b - 9 * b * c + 27 * d) / 27

    if (p == 0) {
        return [pow(-q, 1 / 3)]

    } else if (q == 0) {
        return [sqrt(-p), -sqrt(-p)]

    } else {

        let discriminant = pow(q / 2, 2) + pow(p / 3, 3)

        if (discriminant == 0) {
            return [pow(q / 2, 1 / 3) - b / 3]

        } else if (discriminant > 0) {
            let x = crt(-(q / 2) + sqrt(discriminant))
            let z = crt((q / 2) + sqrt(discriminant))
            return [x - z - b / 3]
        } else {

            let r = sqrt(pow(-(p/3), 3))
            let phi = acos(-(q / (2 * sqrt(pow(-(p / 3), 3)))))

            let s = 2 * pow(r, 1/3)

            return [
                s * cos(phi / 3) - b / 3,
                s * cos((phi + CGFloat(2) * CGFloat(M_PI)) / 3) - b / 3,
                s * cos((phi + CGFloat(4) * CGFloat(M_PI)) / 3) - b / 3
            ]

        }

    }
}

func solveQuadratic(a: CGFloat, b: CGFloat, c: CGFloat) -> [CGFloat] {

    let discriminant = b * b - 4 * a * c;

    if (discriminant < 0) {
        return []

    } else {
        return [
            (-b + sqrt(discriminant)) / (2 * a),
            (-b - sqrt(discriminant)) / (2 * a)
        ]
    }

}

private func crt(v: CGFloat) -> CGFloat {
    if (v<0) {
        return -pow(-v, 1/3)
    }
    return pow(v, 1/3)
}

private func bezierOutputAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGPoint {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)
    let D = C0

    return CGPointMake(((A.x*t+B.x)*t+C.x)*t+D.x, ((A.y*t+B.y)*t+C.y)*t+D.y)
}

// TODO: - future implementation
private func tangentAngleAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGFloat {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)

    return atan2(3.0*A.y*t*t + 2.0*B.y*t + C.y, 3.0*A.x*t*t + 2.0*B.x*t + C.x)
}

}
浅紫色的梦幻 2024-07-12 02:59:23

P_0 和 P_3 之间的距离(立方形式),是的,但我想你知道,这是直接的。

曲线上的距离只是弧长:

图 1 http://www.codecogs.com/eq.latex?%5Cint_%7Bt_0%7D%5E%7Bt_1%7D%20%7B%20|P' (t)|%20dt

其中:

图 2 http://www.codecogs.com/eq.latex?P%27(t)%20=%20[%7Bx%27 ,y%27,z%27%7D]%20=%20[%7B%5Cfrac%7Bdx(t)%7D%7Bdt%7D,%5Cfrac%7Bdy(t)%7D%7Bdt%7D,%5Cfrac% 7Bdz(t)%7D%7Bdt%7D%7D]

(请参阅休息)

也许,你会有 t_0 = 0、t_1 = 1.0 和 dz(t) = 0(2d 平面)。

distance between P_0 and P_3 (in cubic form), yes, but I think you knew that, is straight forward.

Distance on a curve is just arc length:

fig 1 http://www.codecogs.com/eq.latex?%5Cint_%7Bt_0%7D%5E%7Bt_1%7D%20%7B%20|P'(t)|%20dt

where:

fig 2 http://www.codecogs.com/eq.latex?P%27(t)%20=%20[%7Bx%27,y%27,z%27%7D]%20=%20[%7B%5Cfrac%7Bdx(t)%7D%7Bdt%7D,%5Cfrac%7Bdy(t)%7D%7Bdt%7D,%5Cfrac%7Bdz(t)%7D%7Bdt%7D%7D]

(see the rest)

Probably, you'd have t_0 = 0, t_1 = 1.0, and dz(t) = 0 (2d plane).

烟酒忠诚 2024-07-12 02:59:22

这称为“弧长”参数化。 几年前我写了一篇关于此的论文:

http://www.saccade.com /writing/graphics/RE-PARAM.PDF

这个想法是预先计算“参数化”曲线,并通过该曲线评估该曲线。

This is called "arc length" parameterization. I wrote a paper about this several years ago:

http://www.saccade.com/writing/graphics/RE-PARAM.PDF

The idea is to pre-compute a "parameterization" curve, and evaluate the curve through that.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文