在rdd中使用recommendProductsForUsers报错?

发布于 2022-09-30 23:11:17 字数 12377 浏览 71 评论 0

org.apache.spark.SparkException: Task not serializable
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:416)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:406)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:162)
    at org.apache.spark.SparkContext.clean(SparkContext.scala:2459)
    at org.apache.spark.rdd.PairRDDFunctions.$anonfun$combineByKeyWithClassTag$1(PairRDDFunctions.scala:86)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
    at org.apache.spark.rdd.PairRDDFunctions.combineByKeyWithClassTag(PairRDDFunctions.scala:75)
    at org.apache.spark.rdd.PairRDDFunctions.$anonfun$aggregateByKey$1(PairRDDFunctions.scala:168)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
    at org.apache.spark.rdd.PairRDDFunctions.aggregateByKey(PairRDDFunctions.scala:157)
    at org.apache.spark.rdd.PairRDDFunctions.$anonfun$aggregateByKey$5(PairRDDFunctions.scala:197)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
    at org.apache.spark.rdd.PairRDDFunctions.aggregateByKey(PairRDDFunctions.scala:197)
    at org.apache.spark.mllib.rdd.MLPairRDDFunctions.topByKey(MLPairRDDFunctions.scala:40)
    at org.apache.spark.mllib.recommendation.MatrixFactorizationModel$.org$apache$spark$mllib$recommendation$MatrixFactorizationModel$$recommendForAll(MatrixFactorizationModel.scala:320)
    at org.apache.spark.mllib.recommendation.MatrixFactorizationModel.recommendProductsForUsers(MatrixFactorizationModel.scala:227)
    at alsRec$.$anonfun$main$1(alsRec.scala:68)
    at alsRec$.$anonfun$main$1$adapted(alsRec.scala:43)
    at org.apache.spark.streaming.dstream.DStream.$anonfun$foreachRDD$2(DStream.scala:629)
    at org.apache.spark.streaming.dstream.DStream.$anonfun$foreachRDD$2$adapted(DStream.scala:629)
    at org.apache.spark.streaming.dstream.ForEachDStream.$anonfun$generateJob$2(ForEachDStream.scala:51)
    at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12)
    at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:417)
    at org.apache.spark.streaming.dstream.ForEachDStream.$anonfun$generateJob$1(ForEachDStream.scala:51)
    at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12)
    at scala.util.Try$.apply(Try.scala:209)
    at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
    at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.$anonfun$run$1(JobScheduler.scala:256)
    at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12)
    at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
    at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.NotSerializableException: scala.runtime.LazyRef
Serialization stack:
    - object not serializable (class: scala.runtime.LazyRef, value: LazyRef thunk)
    - element of array (index: 2)
    - array (class [Ljava.lang.Object;, size 3)
    - field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)
    - object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.apache.spark.rdd.PairRDDFunctions, functionalInterfaceMethod=scala/Function0.apply:()Ljava/lang/Object;, implementation=invokeStatic org/apache/spark/rdd/PairRDDFunctions.$anonfun$aggregateByKey$2:([BLscala/reflect/ClassTag;Lscala/runtime/LazyRef;)Ljava/lang/Object;, instantiatedMethodType=()Ljava/lang/Object;, numCaptured=3])
    - writeReplace data (class: java.lang.invoke.SerializedLambda)
    - object (class org.apache.spark.rdd.PairRDDFunctions$$Lambda$2145/1169081188, org.apache.spark.rdd.PairRDDFunctions$$Lambda$2145/[email protected])
    - element of array (index: 1)
    - array (class [Ljava.lang.Object;, size 2)
    - field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)
    - object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.apache.spark.rdd.PairRDDFunctions, functionalInterfaceMethod=scala/Function1.apply:(Ljava/lang/Object;)Ljava/lang/Object;, implementation=invokeStatic org/apache/spark/rdd/PairRDDFunctions.$anonfun$aggregateByKey$3:(Lscala/Function2;Lscala/Function0;Ljava/lang/Object;)Ljava/lang/Object;, instantiatedMethodType=(Ljava/lang/Object;)Ljava/lang/Object;, numCaptured=2])
    - writeReplace data (class: java.lang.invoke.SerializedLambda)
    - object (class org.apache.spark.rdd.PairRDDFunctions$$Lambda$2146/1177629037, org.apache.spark.rdd.PairRDDFunctions$$Lambda$2146/[email protected])
    at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:41)
    at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
    at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:413)
    ... 39 more
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:416)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:406)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:162)
    at org.apache.spark.SparkContext.clean(SparkContext.scala:2459)
    at org.apache.spark.rdd.PairRDDFunctions.$anonfun$combineByKeyWithClassTag$1(PairRDDFunctions.scala:86)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
    at org.apache.spark.rdd.PairRDDFunctions.combineByKeyWithClassTag(PairRDDFunctions.scala:75)
    at org.apache.spark.rdd.PairRDDFunctions.$anonfun$aggregateByKey$1(PairRDDFunctions.scala:168)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
    at org.apache.spark.rdd.PairRDDFunctions.aggregateByKey(PairRDDFunctions.scala:157)
    at org.apache.spark.rdd.PairRDDFunctions.$anonfun$aggregateByKey$5(PairRDDFunctions.scala:197)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
    at org.apache.spark.rdd.PairRDDFunctions.aggregateByKey(PairRDDFunctions.scala:197)
    at org.apache.spark.mllib.rdd.MLPairRDDFunctions.topByKey(MLPairRDDFunctions.scala:40)
    at org.apache.spark.mllib.recommendation.MatrixFactorizationModel$.org$apache$spark$mllib$recommendation$MatrixFactorizationModel$$recommendForAll(MatrixFactorizationModel.scala:320)
    at org.apache.spark.mllib.recommendation.MatrixFactorizationModel.recommendProductsForUsers(MatrixFactorizationModel.scala:227)
    at alsRec$.$anonfun$main$1(alsRec.scala:68)
    at alsRec$.$anonfun$main$1$adapted(alsRec.scala:43)
    at org.apache.spark.streaming.dstream.DStream.$anonfun$foreachRDD$2(DStream.scala:629)
    at org.apache.spark.streaming.dstream.DStream.$anonfun$foreachRDD$2$adapted(DStream.scala:629)
    at org.apache.spark.streaming.dstream.ForEachDStream.$anonfun$generateJob$2(ForEachDStream.scala:51)
    at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12)
    at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:417)
    at org.apache.spark.streaming.dstream.ForEachDStream.$anonfun$generateJob$1(ForEachDStream.scala:51)
    at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12)
    at scala.util.Try$.apply(Try.scala:209)
    at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
    at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.$anonfun$run$1(JobScheduler.scala:256)
    at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12)
    at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
    at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.NotSerializableException: scala.runtime.LazyRef
Serialization stack:
    - object not serializable (class: scala.runtime.LazyRef, value: LazyRef thunk)
    - element of array (index: 2)
    - array (class [Ljava.lang.Object;, size 3)
    - field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)
    - object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.apache.spark.rdd.PairRDDFunctions, functionalInterfaceMethod=scala/Function0.apply:()Ljava/lang/Object;, implementation=invokeStatic org/apache/spark/rdd/PairRDDFunctions.$anonfun$aggregateByKey$2:([BLscala/reflect/ClassTag;Lscala/runtime/LazyRef;)Ljava/lang/Object;, instantiatedMethodType=()Ljava/lang/Object;, numCaptured=3])
    - writeReplace data (class: java.lang.invoke.SerializedLambda)
    - object (class org.apache.spark.rdd.PairRDDFunctions$$Lambda$2145/1169081188, org.apache.spark.rdd.PairRDDFunctions$$Lambda$2145/[email protected])
    - element of array (index: 1)
    - array (class [Ljava.lang.Object;, size 2)
    - field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)
    - object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.apache.spark.rdd.PairRDDFunctions, functionalInterfaceMethod=scala/Function1.apply:(Ljava/lang/Object;)Ljava/lang/Object;, implementation=invokeStatic org/apache/spark/rdd/PairRDDFunctions.$anonfun$aggregateByKey$3:(Lscala/Function2;Lscala/Function0;Ljava/lang/Object;)Ljava/lang/Object;, instantiatedMethodType=(Ljava/lang/Object;)Ljava/lang/Object;, numCaptured=2])
    - writeReplace data (class: java.lang.invoke.SerializedLambda)
    - object (class org.apache.spark.rdd.PairRDDFunctions$$Lambda$2146/1177629037, org.apache.spark.rdd.PairRDDFunctions$$Lambda$2146/[email protected])
    at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:41)
    at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
    at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:413)
    ... 39 more
Disconnected from the target VM, address: '127.0.0.1:49949', transport: 'socket'

Process finished with exit code 1

查了资料
貌似在foreach中使用没有序列化的recommendProductsForUsers函数导致的

读取kafka的流以后要用foreachRdd读取的吧
然后每次rdd都要做推荐算法

所以我不知道怎么改了

是什么原因?如何解决这个问题?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

南巷近海 2022-10-07 23:11:17

在查阅了google+百度+头条 十几页的资料后
找到了解决方法:连接

原来是版本不对

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文