Java如何通过recursion把一个数组array生成一个二叉树binary tree?
1.题目描述
你好,我需要用recursion的方法把一个array生成一个binary tree with linked structure。比如说给定的array是 , 需生成的结果:。
已经给了10个文件,关系如下:
我的任务是需要在IntBST.java中创建一个叫makeBinaryTree的method来实现以上需求,其余所有文件中内容都是提前给定的,不需要修改。
- 题目来源及自己的思路
我的思路是把array中点作为root,用recursion分别把左、右边subarray的中点作为left tree(t1)和right tree(t2)的root,最后再把两边的t1和t2连接起来。intBST class最后makeBinaryTree中//complete this method这行后面是我写的code。我运行出来的有NullPointerException,可能是root那里有错,别的地方可能也有不少问题。作为Java新手小白,我思路有点混乱,请大神指点,该如何修改。不胜感激!
- 相关代码
Queue.java
public interface Queue<E> {
int size();
boolean isEmpty();
void enqueue(E e);
E first();
E dequeue();
}
LinkedQueue.java
public class LinkedQueue<E> implements Queue<E> {
public LinkedQueue() { }
@Override
public int size() { return list.size(); }
@Override
public boolean isEmpty() { return list.isEmpty(); }
@Override
public void enqueue(E element) { list.addLast(element); }
@Override
public E first() { return list.first(); }
@Override
public E dequeue() { return list.removeFirst(); }
public String toString() {return list.toString();}
}
Tree.java
import java.util.Iterator;
/**
* An interface for a tree where nodes can have an arbitrary number of children. * * @author Michael T. Goodrich
* @author Roberto Tamassia
* @author Michael H. Goldwasser
*/public interface Tree<E> extends Iterable<E> {
/**
* Returns the root Position of the tree (or null if tree is empty). * @return root Position of the tree (or null if tree is empty)
*/ Node<E> root();
/**
* Returns the Position of p's parent (or null if p is root). * * @param p A valid Position within the tree
* @return Position of p's parent (or null if p is root)
* @throws IllegalArgumentException if p is not a valid Position for this tree.
*/ Node<E> parent(Node<E> p) throws IllegalArgumentException;
/**
* Returns an iterable collection of the Positions representing p's children. * * @param p A valid Position within the tree
* @return iterable collection of the Positions of p's children
* @throws IllegalArgumentException if p is not a valid Position for this tree.
*/ Iterable<Node<E>> children(Node<E> p)
throws IllegalArgumentException;
/**
* Returns the number of children of Position p. * * @param p A valid Position within the tree
* @return number of children of Position p
* @throws IllegalArgumentException if p is not a valid Position for this tree.
*/ int numChildren(Node<E> p) throws IllegalArgumentException;
/**
* Returns true if Position p has one or more children. * * @param p A valid Position within the tree
* @return true if p has at least one child, false otherwise
* @throws IllegalArgumentException if p is not a valid Position for this tree.
*/ boolean isInternal(Node<E> p) throws IllegalArgumentException;
/**
* Returns true if Position p does not have any children. * * @param p A valid Position within the tree
* @return true if p has zero children, false otherwise
* @throws IllegalArgumentException if p is not a valid Position for this tree.
*/ boolean isExternal(Node<E> p) throws IllegalArgumentException;
/**
* Returns true if Position p represents the root of the tree. * * @param p A valid Position within the tree
* @return true if p is the root of the tree, false otherwise
* @throws IllegalArgumentException if p is not a valid Position for this tree.
*/ boolean isRoot(Node<E> p) throws IllegalArgumentException;
/**
* Returns the number of nodes in the tree. * @return number of nodes in the tree
*/ int size();
/**
* Tests whether the tree is empty. * @return true if the tree is empty, false otherwise
*/ boolean isEmpty();
/**
* Returns an iterator of the elements stored in the tree. * @return iterator of the tree's elements
*/ Iterator<E> iterator();
/**
* Returns an iterable collection of the positions of the tree. * @return iterable collection of the tree's positions
*/ Iterable<Node<E>> positions();
}
AbstractTree.java
import net.datastructures.Queue;
import net.datastructures.LinkedQueue;
import java.util.Iterator;
import java.util.List; // for use as snapshot iterator
import java.util.ArrayList; // for use as snapshot iterator
/**
* An abstract base class providing some functionality of the Tree interface. * * The following three methods remain abstract, and must be * implemented by a concrete subclass: root, parent, children. Other * methods implemented in this class may be overridden to provide a * more direct and efficient implementation. * * @author Michael T. Goodrich
* @author Roberto Tamassia
* @author Michael H. Goldwasser
*/public abstract class AbstractTree<E> implements Tree<E> {
/**
* Returns true if Node p has one or more children. * * @param p A valid Node within the tree
* @return true if p has at least one child, false otherwise
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ @Override
public boolean isInternal(Node<E> p) { return numChildren(p) > 0; }
/**
* Returns true if Node p does not have any children. * * @param p A valid Node within the tree
* @return true if p has zero children, false otherwise
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ @Override
public boolean isExternal(Node<E> p) { return numChildren(p) == 0; }
/**
* Returns true if Node p represents the root of the tree. * * @param p A valid Node within the tree
* @return true if p is the root of the tree, false otherwise
*/ @Override
public boolean isRoot(Node<E> p) { return p == root(); }
/**
* Returns the number of children of Node p. * * @param p A valid Node within the tree
* @return number of children of Node p
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ @Override
public int numChildren(Node<E> p) {
int count=0;
for (Node child : children(p)) count++;
return count;
}
/**
* Returns the number of nodes in the tree. * @return number of nodes in the tree
*/ @Override
public int size() {
int count=0;
for (Node p : positions()) count++;
return count;
}
/**
* Tests whether the tree is empty. * @return true if the tree is empty, false otherwise
*/ @Override
public boolean isEmpty() { return size() == 0; }
//---------- support for computing depth of nodes and height of (sub)trees ----------
/** Returns the number of levels separating Node p from the root.
* * @param p A valid Node within the tree
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ public int depth(Node<E> p) throws IllegalArgumentException {
if (isRoot(p))
return 0;
else return 1 + depth(parent(p));
}
/** Returns the height of the tree.
* * Note: This implementation works, but runs in O(n^2) worst-case time. */ private int heightBad() { // works, but quadratic worst-case time
int h = 0;
for (Node<E> p : positions())
if (isExternal(p)) // only consider leaf positions
h = Math.max(h, depth(p));
return h;
}
/**
* Returns the height of the subtree rooted at Node p. * * @param p A valid Node within the tree
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ public int height(Node<E> n) throws IllegalArgumentException {
int h = 0; // base case if p is external
for (Node<E> c : children(n))
h = Math.max(h, 1 + height(c));
return h;
}
//---------- support for various iterations of a tree ----------
//---------------- nested ElementIterator class ---------------- /* This class adapts the iteration produced by positions() to return elements. */ private class ElementIterator implements Iterator<E> {
Iterator<Node<E>> posIterator = positions().iterator();
public boolean hasNext() { return posIterator.hasNext(); }
public E next() { return posIterator.next().getElement(); } // return element!
public void remove() { posIterator.remove(); }
}
/**
* Returns an iterator of the elements stored in the tree. * @return iterator of the tree's elements
*/ @Override
public Iterator<E> iterator() { return new ElementIterator(); }
/**
* Returns an iterable collection of the positions of the tree. * @return iterable collection of the tree's positions
*/ @Override
public Iterable<Node<E>> positions() { return preorder(); }
/**
* Adds positions of the subtree rooted at Node p to the given * snapshot using a preorder traversal * @param p Node serving as the root of a subtree
* @param snapshot a list to which results are appended
*/ private void preorderSubtree(Node<E> p, List<Node<E>> snapshot) {
snapshot.add(p); // for preorder, we add position p before exploring subtrees
for (Node<E> c : children(p))
preorderSubtree(c, snapshot);
}
/**
* Returns an iterable collection of positions of the tree, reported in preorder. * @return iterable collection of the tree's positions in preorder
*/ public Iterable<Node<E>> preorder() {
List<Node<E>> snapshot = new ArrayList<>();
if (!isEmpty())
preorderSubtree(root(), snapshot); // fill the snapshot recursively
return snapshot;
}
/**
* Adds positions of the subtree rooted at Node p to the given * snapshot using a postorder traversal * @param p Node serving as the root of a subtree
* @param snapshot a list to which results are appended
*/ private void postorderSubtree(Node<E> p, List<Node<E>> snapshot) {
for (Node<E> c : children(p))
postorderSubtree(c, snapshot);
snapshot.add(p); // for postorder, we add position p after exploring subtrees
}
/**
* Returns an iterable collection of positions of the tree, reported in postorder. * @return iterable collection of the tree's positions in postorder
*/ public Iterable<Node<E>> postorder() {
List<Node<E>> snapshot = new ArrayList<>();
if (!isEmpty())
postorderSubtree(root(), snapshot); // fill the snapshot recursively
return snapshot;
}
/**
* Returns an iterable collection of positions of the tree in breadth-first order. * @return iterable collection of the tree's positions in breadth-first order
*/ public Iterable<Node<E>> breadthfirst() {
List<Node<E>> snapshot = new ArrayList<>();
if (!isEmpty()) {
Queue<Node<E>> fringe = new LinkedQueue<>();
fringe.enqueue(root()); // start with the root
while (!fringe.isEmpty()) {
Node<E> p = fringe.dequeue(); // remove from front of the queue
snapshot.add(p); // report this position
for (Node<E> c : children(p))
fringe.enqueue(c); // add children to back of queue
}
}
return snapshot;
}
}
BinaryTree.java
public interface BinaryTree<E> extends Tree<E> {
/**
* Returns the Node of p's left child (or null if no child exists). * * @param p A valid Node within the tree
* @return the Node of the left child (or null if no child exists)
* @throws IllegalArgumentException if p is not a valid Node for this tree
*/ Node<E> left(Node<E> p) throws IllegalArgumentException;
/**
* Returns the Node of p's right child (or null if no child exists). * * @param p A valid Node within the tree
* @return the Node of the right child (or null if no child exists)
* @throws IllegalArgumentException if p is not a valid Node for this tree
*/ Node<E> right(Node<E> p) throws IllegalArgumentException;
/**
* Returns the Node of p's sibling (or null if no sibling exists). * * @param p A valid Node within the tree
* @return the Node of the sibling (or null if no sibling exists)
* @throws IllegalArgumentException if p is not a valid Node for this tree
*/ Node<E> sibling(Node<E> p) throws IllegalArgumentException;
}
AbstractBinaryTree.java
import java.util.List;
import java.util.ArrayList;
/**
* An abstract base class providing some functionality of the BinaryTree interface. * * The following five methods remain abstract, and must be implemented * by a concrete subclass: size, root, parent, left, right. * * @author Michael T. Goodrich
* @author Roberto Tamassia
* @author Michael H. Goldwasser
*/public abstract class AbstractBinaryTree<E> extends AbstractTree<E>
implements BinaryTree<E> {
/**
* Returns the Node of p's sibling (or null if no sibling exists). * * @param p A valid Node within the tree
* @return the Node of the sibling (or null if no sibling exists)
* @throws IllegalArgumentException if p is not a valid Node for this tree
*/ @Override
public Node<E> sibling(Node<E> p) {
Node<E> parent = parent(p);
if (parent == null) return null; // p must be the root
if (p == left(parent)) // p is a left child
return right(parent); // (right child might be null)
else // p is a right child
return left(parent); // (left child might be null)
}
/**
* Returns the number of children of Node p. * * @param p A valid Node within the tree
* @return number of children of Node p
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ @Override
public int numChildren(Node<E> p) {
int count=0;
if (left(p) != null)
count++;
if (right(p) != null)
count++;
return count;
}
/**
* Returns an iterable collection of the Nodes representing p's children. * * @param p A valid Node within the tree
* @return iterable collection of the Nodes of p's children
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ @Override
public Iterable<Node<E>> children(Node<E> p) {
List<Node<E>> snapshot = new ArrayList<>(2); // max capacity of 2
if (left(p) != null)
snapshot.add(left(p));
if (right(p) != null)
snapshot.add(right(p));
return snapshot;
}
/**
* Adds positions of the subtree rooted at Node p to the given * snapshot using an inorder traversal * @param p Node serving as the root of a subtree
* @param snapshot a list to which results are appended
*/ private void inorderSubtree(Node<E> p, List<Node<E>> snapshot) {
if (left(p) != null)
inorderSubtree(left(p), snapshot);
snapshot.add(p);
if (right(p) != null)
inorderSubtree(right(p), snapshot);
}
/**
* Returns an iterable collection of positions of the tree, reported in inorder. * @return iterable collection of the tree's positions reported in inorder
*/ public Iterable<Node<E>> inorder() {
List<Node<E>> snapshot = new ArrayList<>();
if (!isEmpty())
inorderSubtree(root(), snapshot); // fill the snapshot recursively
return snapshot;
}
/**
* Returns an iterable collection of the positions of the tree using inorder traversal * @return iterable collection of the tree's positions using inorder traversal
*/ @Override
public Iterable<Node<E>> positions() {
return inorder();
}
}
Node.java
public class Node<E> {
private E element; // an element stored at this node
private Node<E> parent; // a reference to the parent node (if any)
private Node<E> left; // a reference to the left child (if any)
private Node<E> right; // a reference to the right child (if any)
/**
* Constructs a node with the given element and neighbors. * * @param e the element to be stored
* @param above reference to a parent node
* @param leftChild reference to a left child node
* @param rightChild reference to a right child node
*/ public Node(E e, Node<E> above, Node<E> leftChild,
Node<E> rightChild) {
element = e;
parent = above;
left = leftChild;
right = rightChild;
}
// accessor methods
public E getElement() { return element; }
public Node<E> getParent() { return parent; }
public Node<E> getLeft() { return left; }
public Node<E> getRight() { return right; }
// update methods
public void setElement(E e) { element = e; }
public void setParent(Node<E> parentNode) { parent = parentNode; }
public void setLeft(Node<E> leftChild) { left = leftChild; }
public void setRight(Node<E> rightChild) { right = rightChild; }
}
NodeBinaryTree.java
import java.util.Stack;
/**
* Concrete implementation of a binary tree using a node-based, linked * structure. * * @author Michael T. Goodrich
* @author Roberto Tamassia
* @author Michael H. Goldwasser
*/public class NodeBinaryTree<E> extends AbstractBinaryTree<E> {
/** Factory function to create a new node storing element e. */
protected Node<E> createNode(E e, Node<E> parent, Node<E> left, Node<E> right) {
return new Node<E>(e, parent, left, right);
}
// NodeBinaryTree instance variables
/** The root of the binary tree */
public Node<E> root = null; // root of the tree
/** The number of nodes in the binary tree */
// private int size = 0; // number of nodes in the tree
private int size = 0;
// constructor
/** Construts an empty binary tree. */
public NodeBinaryTree() { } // constructs an empty binary tree
// nonpublic utility /**
* Verifies that a Node belongs to the appropriate class, and is not one * that has been previously removed. Note that our current implementation does * not actually verify that the position belongs to this particular list * instance. * * @param p a Node (that should belong to this tree)
* @return the underlying Node instance for the position
* @throws IllegalArgumentException if an invalid position is detected
*/ /*
* protected Node<E> validate(Node<E> p) throws IllegalArgumentException { if * (!(p instanceof Node)) throw new * IllegalArgumentException("Not valid position type"); Node<E> node = (Node<E>) * p; // safe cast if (node.getParent() == node) // our convention for defunct * node throw new IllegalArgumentException("p is no longer in the tree"); return * node; } */
// accessor methods (not already implemented in AbstractBinaryTree) /**
* Returns the number of nodes in the tree. ** @return number of nodes in the tree
*/ @Override
public int size() {
return size;
}
/**
* Returns the root Node of the tree (or null if tree is empty). ** @return root Node of the tree (or null if tree is empty)
*/ @Override
public Node<E> root() {
return root;
}
/**
* Returns the Node of p's parent (or null if p is root). * * @param n A valid Node within the tree
* @return Node of p's parent (or null if p is root)
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ @Override
public Node<E> parent(Node<E> n) throws IllegalArgumentException {
return n.getParent();
}
/**
* Returns the Node of p's left child (or null if no child exists). * * @param n A valid Node within the tree
* @return the Node of the left child (or null if no child exists)
* @throws IllegalArgumentException if p is not a valid Node for this tree
*/ @Override
public Node<E> left(Node<E> n) throws IllegalArgumentException {
return n.getLeft();
}
/**
* Returns the Node of p's right child (or null if no child exists). * * @param n A valid Node within the tree
* @return the Node of the right child (or null if no child exists)
* @throws IllegalArgumentException if p is not a valid Node for this tree
*/ @Override
public Node<E> right(Node<E> n) throws IllegalArgumentException {
return n.getRight();
}
// update methods supported by this class
/**
* Places element e at the root of an empty tree and returns its new Node. * * @param e the new element
* @return the Node of the new element
* @throws IllegalStateException if the tree is not empty
*/ public Node<E> addRoot(E e) throws IllegalStateException {
if (!isEmpty())
throw new IllegalStateException("Tree is not empty");
root = createNode(e, null, null, null);
size = 1;
return root;
}
/**
* Creates a new left child of Node p storing element e and returns its * Node. * * @param n the Node to the left of which the new element is inserted
* @param e the new element
* @return the Node of the new element
* @throws IllegalArgumentException if p is not a valid Node for this tree
* @throws IllegalArgumentException if p already has a left child
*/ public Node<E> addLeft(Node<E> n, E e) throws IllegalArgumentException {
Node<E> parent = n;
if (parent.getLeft() != null)
throw new IllegalArgumentException("n already has a left child");
Node<E> child = createNode(e, parent, null, null); // node child's parent is n,left is null, right is null
parent.setLeft(child); // node child becomes the left child of parent node
size++;
return child;
}
/**
* Creates a new right child of Node p storing element e and returns its * Node. * * @param n the Node to the right of which the new element is inserted
* @param e the new element
* @return the Node of the new element
* @throws IllegalArgumentException if p is not a valid Node for this tree.
* @throws IllegalArgumentException if p already has a right child
*/ public Node<E> addRight(Node<E> n, E e) throws IllegalArgumentException {
Node<E> parent = n;
if (parent.getRight() != null)
throw new IllegalArgumentException("n already has a right child");
Node<E> child = createNode(e, parent, null, null);
parent.setRight(child);
size++;
return child;
}
/**
* Replaces the element at Node p with element e and returns the replaced * element. * * @param n the relevant Node
* @param e the new element
* @return the replaced element
* @throws IllegalArgumentException if p is not a valid Node for this tree.
*/ public E set(Node<E> n, E e) throws IllegalArgumentException {
E temp = n.getElement();
n.setElement(e);
return temp;
}
/**
* Attaches trees t1 and t2, respectively, as the left and right subtree of the * leaf Node n. As a side effect, t1 and t2 are set to empty trees. * * @param n a leaf of the tree
* @param t1 an independent tree whose structure becomes the left child of n
* @param t2 an independent tree whose structure becomes the right child of n
* @throws IllegalArgumentException if p is not a valid Node for this tree
* @throws IllegalArgumentException if p is not a leaf
*/ public void attach(Node<E> n, NodeBinaryTree<E> t1, NodeBinaryTree<E> t2) throws IllegalArgumentException {
if (isInternal(n))
throw new IllegalArgumentException("p must be a leaf");
size += t1.size() + t2.size();
if (!t1.isEmpty()) { // attach t1 as left subtree of node
t1.root.setParent(n); // node n becomes to t1's root parent
n.setLeft(t1.root); // t1's root becomes to the left child of n
t1.root = null; // remove original t1 for garbage collection
t1.size = 0; // remove original t1 for garbage collection
}
if (!t2.isEmpty()) { // attach t2 as right subtree of node
t2.root.setParent(n);
n.setRight(t2.root);
t2.root = null;
t2.size = 0;
}
}
/**
* Removes the node at Node p and replaces it with its child, if any. * * @param n the relevant Node
* @return element that was removed
* @throws IllegalArgumentException if n is not a valid Node for this tree.
* @throws IllegalArgumentException if n has two children.
*/ public E remove(Node<E> n) throws IllegalArgumentException {
if (numChildren(n) == 2)
throw new IllegalArgumentException("p has two children");
Node<E> child = (n.getLeft() != null ? n.getLeft() : n.getRight());
if (child != null)
child.setParent(n.getParent()); // child's grandparent becomes its parent
if (n == root)
root = child; // child becomes root
else {
Node<E> parent = n.getParent();
if (n == parent.getLeft())
parent.setLeft(child);
else parent.setRight(child);
}
size--;
E temp = n.getElement();
n.setElement(null); // help garbage collection
n.setLeft(null);
n.setRight(null);
n.setParent(n); // our convention for defunct node
return temp;
}
/**
* Print a binary tree horizontally * Modified version of https://stackoverflow.com/questions/4965335/how-to-print-binary-tree-diagram * Modified by Keith Gutfreund * @param n Node in tree to start printing from
*/ void print(Node<E> n){
print ("", n);
}
public void print(String prefix, Node<E> n){
if (n != null){
print(prefix + " ", right(n));
System.out.println (prefix + ("|-- ") + n.getElement());
print(prefix + " ", left(n));
}
}
}
IntBST.java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
// binary search tree storing integers
public class IntBST extends NodeBinaryTree<Integer> {
private int size = 0;
public IntBST() {
}
public int size() {
return size;
}
public void setSize(int s) {
size = s;
}
public boolean isEmpty() {
return size() == 0;
}
/**
* Places element e at the root of an empty tree and returns its new Node. * * @param e the new element
* @return the Node of the new element
* @throws IllegalStateException if the tree is not empty
*/
public Node<Integer> addRoot(Integer e) throws IllegalStateException {
if (size != 0)
throw new IllegalStateException("Tree is not empty");
root = createNode(e, null, null, null);
size = 1;
return root;
}
/**
* Print a binary tree horizontally Modified version of * https://stackoverflow.com/questions/4965335/how-to-print-binary-tree-diagram * Modified by Keith Gutfreund * * @param n Node in tree to start printing from
*/
public void print(Node<Integer> n) {
print("", n);
}
public void print(String prefix, Node<Integer> n) {
if (n != null) {
print(prefix + " ", right(n));
System.out.println(prefix + ("|-- ") + n.getElement());
print(prefix + " ", left(n));
}
}
public void inorderPrint(Node<Integer> n) {
if (n == null)
return;
// Node<Integer> n = validate(p);
inorderPrint(n.getLeft());
System.out.print(n.getElement() + " ");
inorderPrint(n.getRight());
}
public Iterable<Node<Integer>> children(Node<Integer> n) {
List<Node<Integer>> snapshot = new ArrayList<>(2); // max capacity of 2
if (left(n) != null)
snapshot.add(left(n));
if (right(n) != null)
snapshot.add(right(n));
return snapshot;
}
public int height(Node<Integer> n) throws IllegalArgumentException {
if (isExternal(n)) {
return 0;
}
int h = 0; // base case if p is external
for (Node<Integer> c : children(n)) h = Math.max(h, height(c));
return h + 1;
}
// Receives an array of integers and creates a binary tree
// Input: an array of integers, a; size of a is 2^k - 1, k = 1, 2, . . . // integers in the array are sorted in non-decreasing order // Output: an IntBST, which is a "complete" binary tree with all integers in the array a
public static IntBST makeBinaryTree(int[] a) {
// complete this method
// base case
IntBST tree = new IntBST();
int middle = (a.length - 1) / 2;
Node rootNode = new Node(a[middle],null,null,null);
if (a.length == 1) {
tree.root.setParent(rootNode);
return tree;
}
while (a.length > 1){
int[] leftSubArray = Arrays.copyOfRange(a,0, middle);
int[] rightSubArray = Arrays.copyOfRange(a, middle + 1, a.length);
IntBST t1 = makeBinaryTree(leftSubArray);
IntBST t2 = makeBinaryTree(rightSubArray);
// attach t1 and t2 with root
if (!t1.isEmpty()) {
t1.root.setParent(rootNode);
rootNode.setLeft(t1.root);
}
if (!t2.isEmpty()) {
t2.root.setParent(rootNode);
rootNode.setRight(t2.root);
}
}
return tree;
}
}
Hw5_P7.java
public class Hw5_P7 {
public static void main(String[] args) {
IntBST t = new IntBST();
int[] a1 = {10};
int[] a2 = {10, 20, 30};
int[] a3 = {10, 20, 30, 40, 50, 60, 70};
int[] a4 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150};
t = IntBST.makeBinaryTree(a4);
System.out.println("Tree size: " + t.size());
System.out.println("Tree height: " + t.height(t.root));
System.out.println("");
t.print(t.root);
}
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论