在pretraining 880000 step之后, fine-tune不起作用

发布于 2022-09-12 04:35:37 字数 4181 浏览 23 评论 0

我用的这里的代码 https://github.com/NVIDIA/Dee...

Pretrain参数:

 15:47:02,534: INFO tensorflow 140678508230464   init_checkpoint: bertbase3layer-extract-from-google
 15:47:02,534: INFO tensorflow 140678508230464   optimizer_type: lamb
 15:47:02,534: INFO tensorflow 140678508230464   max_seq_length: 64
 15:47:02,534: INFO tensorflow 140678508230464   max_predictions_per_seq: 5
 15:47:02,534: INFO tensorflow 140678508230464   do_train: True
 15:47:02,535: INFO tensorflow 140678508230464   do_eval: False
 15:47:02,535: INFO tensorflow 140678508230464   train_batch_size: 32
 15:47:02,535: INFO tensorflow 140678508230464   eval_batch_size: 8
 15:47:02,535: INFO tensorflow 140678508230464   learning_rate: 5e-05
 15:47:02,535: INFO tensorflow 140678508230464   num_train_steps: 10000000
 15:47:02,535: INFO tensorflow 140678508230464   num_warmup_steps: 10000
 15:47:02,535: INFO tensorflow 140678508230464   save_checkpoints_steps: 1000
 15:47:02,535: INFO tensorflow 140678508230464   display_loss_steps: 10
 15:47:02,535: INFO tensorflow 140678508230464   iterations_per_loop: 1000
 15:47:02,535: INFO tensorflow 140678508230464   max_eval_steps: 100
 15:47:02,535: INFO tensorflow 140678508230464   num_accumulation_steps: 1
 15:47:02,535: INFO tensorflow 140678508230464   allreduce_post_accumulation: False
 15:47:02,535: INFO tensorflow 140678508230464   verbose_logging: False
 15:47:02,535: INFO tensorflow 140678508230464   horovod: True
 15:47:02,536: INFO tensorflow 140678508230464   report_loss: True
 15:47:02,536: INFO tensorflow 140678508230464   manual_fp16: False
 15:47:02,536: INFO tensorflow 140678508230464   amp: False
 15:47:02,536: INFO tensorflow 140678508230464   use_xla: True
 15:47:02,536: INFO tensorflow 140678508230464   init_loss_scale: 4294967296
 15:47:02,536: INFO tensorflow 140678508230464   ?: False
 15:47:02,536: INFO tensorflow 140678508230464   help: False
 15:47:02,536: INFO tensorflow 140678508230464   helpshort: False
 15:47:02,536: INFO tensorflow 140678508230464   helpfull: False
 15:47:02,536: INFO tensorflow 140678508230464   helpxml: False
 15:47:02,536: INFO tensorflow 140678508230464 **************************

Pretrain loss: (我去掉了nsp_loss)

{'throughput_train': 1196.9646684552622, 'mlm_loss': 0.9837073683738708, 'nsp_loss': 0.0, 'total_loss': 0.9837073683738708, 'avg_loss_step': 1.200513333082199, 'learning_rate': '0.00038143058'}
{'throughput_train': 1230.5063662500734, 'mlm_loss': 1.3001925945281982, 'nsp_loss': 0.0, 'total_loss': 1.3001925945281982, 'avg_loss_step': 1.299936044216156, 'learning_rate': '0.00038143038'}
{'throughput_train': 1236.4348949169155, 'mlm_loss': 1.473339319229126, 'nsp_loss': 0.0, 'total_loss': 1.473339319229126, 'avg_loss_step': 1.2444063007831574, 'learning_rate': '0.00038143017'}
{'throughput_train': 1221.2668264552692, 'mlm_loss': 0.9924975633621216, 'nsp_loss': 0.0, 'total_loss': 0.9924975633621216, 'avg_loss_step': 1.1603020071983337, 'learning_rate': '0.00038142994'}

Fine-tune代码:

self.train_op = tf.train.AdamOptimizer(0.00001).minimize(self.loss, global_step=self.global_step)

Fine-tune 正确率: (restore from my ckpt pretrained from https://github.com/NVIDIA/Dee...

epoch 1:
training step 895429, loss 4.98, acc 0.079
dev loss 4.853, acc 0.092

epoch 2:
training step 895429, loss 4.97, acc 0.080
dev loss 4.823, acc 0.092

epoch 3:
training step 895429, loss 4.96, acc 0.081
dev loss 4.849, acc 0.092

epoch 4:
training step 895429, loss 4.95, acc 0.082
dev loss 4.843, acc 0.092

不 restore pretrained ckpt:

epoch 1:
training step 10429, loss 2.48, acc 0.606
dev loss 1.604, acc 0.8036

Restore google官方的BERT-Base pretrained ckpt. 或者 restore from a pretrained ckpt pretrained from https://github.com/guotong198...

epoch 1:
training loss 1.89, acc 0.761
dev loss 1.351, acc 0.869

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文