对DolphinDB时序数据应用rolling window
pandas可以基于时间列对数据按时间窗口进行聚合计算。官网给了一个例子:
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
... index = [pd.Timestamp('20130101 09:00:00'),
... pd.Timestamp('20130101 09:00:02'),
... pd.Timestamp('20130101 09:00:03'),
... pd.Timestamp('20130101 09:00:05'),
... pd.Timestamp('20130101 09:00:06')])
>>> df.rolling('2s').sum()
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
在DolphinDB中,滑动窗口聚合函数(比如mavg, msum)是基于行号,而不是时间进行计算的。因此,对于以下代码:
t = table(09:00:00 09:00:02 09:00:03 09:00:05 09:00:06 as time, 0 1 2 NULL 4 as B)
select msum(B, 2) from t
执行结果是
msum_B
------
NULL
1
3
2
4
不论时间列的数据是什么,结果总是一样的。我想知道如何在DolphinDB中像pandas一样对时间列进行rolling计算。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)