Python爬取FAERS数据报错

发布于 2022-09-11 17:57:28 字数 7781 浏览 31 评论 0

  1. 问题描述
  • 使用luigi框架爬取faers数据报错,IDE为pycharm
  • 错误信息为
No task specified

Process finished with exit code 1

2.源代码

import os
import re
import shutil
import requests
from io import BytesIO
from zipfile import ZipFile
from urllib.request import urlretrieve
from urllib.request import urlopen
from bs4 import BeautifulSoup
import pandas as pd
import numpy as np
import warnings
import luigi
import sys
import logging


def extractZip(url, source_dir, data_dir):
    logging.debug('In the Task : extractZip')
    r = requests.get(url)
    z = ZipFile(BytesIO(r.content))
    z.extractall(source_dir)
    deletePDF(source_dir)
    copyFile(source_dir, data_dir)


def deletePDF(path):
    logging.debug('In the Task : deletePDF')
    for parent, dirnames, filenames in os.walk(source_dir):
        for fn in filenames:
            if fn.lower().endswith('.pdf'):
                print("Deleteting" + fn)
                os.remove(os.path.join(parent, fn))
            if fn.lower().endswith('.doc'):
                print("Deleteting" + fn)
                os.remove(os.path.join(parent, fn))
            if fn.startswith("RPSR"):
                print("Deleteting" + fn)
                os.remove(os.path.join(parent, fn))
            if fn.startswith("INDI"):
                print("Deleteting" + fn)
                os.remove(os.path.join(parent, fn))
            if fn.startswith("THER"):
                print("Deleteting" + fn)
                os.remove(os.path.join(parent, fn))


def copyFile(source_dir, data_dir):
    logging.debug('In the Task : copyFiles')
    RootDir1 = os.getcwd() + '/' + source_dir
    TargetFolder = os.getcwd() + '/' + data_dir
    for root, dirs, files in os.walk((os.path.normpath(RootDir1)), topdown=False):
        for name in files:
            if name.endswith('.txt'):
                SourceFolder = os.path.join(root, name)
                shutil.move(SourceFolder, TargetFolder)


class get_files_url(luigi.Task):
    logging.debug('In the Task : getWebUrls')

    def requires(self):
        return []

    def run(self):
        source_dir = "FAERSsrc"
        data_dir = "FAERSdata"
        files = {}
        url = {}
        host_url = "http://www.fda.gov"
        target_page = [
            "http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm"]
        for page_url in target_page:
            try:
                page_bs = BeautifulSoup(urlopen(page_url), "lxml")
            except:
                page_bs = BeautifulSoup(urlopen(page_url))
            for url in page_bs.find_all("a"):
                a_string = str(url.string)
                if "ASCII" in a_string.upper():
                    files[a_string.encode("utf-8")] = host_url + url["href"]
                    url = host_url + url["href"]
                    extractZip(url, source_dir, data_dir)
            for url in page_bs.find_all("linktitle"):
                a_string = str(url.string)
                if "ASCII" in a_string.upper():
                    files[a_string.encode("utf-8")] = host_url + url.parent["href"]
                    url = host_url + url.parent["href"]
                    extractZip(url, source_dir, data_dir)
        with self.output().open('w') as f:
            f.write("hello")

    def output(self):
        return luigi.LocalTarget('url.txt')


class mergeData(luigi.Task):

    def requires(self):
        return [get_files_url()]

    def run(self):

        directoryPath = os.getcwd() + "/FAERSdata"
        demo = pd.DataFrame(
            columns=['primaryid', 'caseid', 'mfr_dt', 'init_fda_dt', 'rept_cod', 'mfr_num', 'mfr_sndr', 'age',
                     'sex', 'wt', 'wt_cod', 'occp_cod', 'occr_country'])
        drug = pd.DataFrame(columns=['primaryid', 'caseid', 'role_cod', 'drugname', 'route', 'dose_amt', 'dose_unit',
                                     'dose_form', 'dose_freq'])
        reaction = pd.DataFrame(columns=['primaryid', 'caseid', 'pt'])
        outcome = pd.DataFrame(columns=['primaryid', 'caseid', 'outc_cod'])
        print("in run")
        for filename in os.listdir(directoryPath):
            if "DEMO" in filename:
                demo_df = pd.read_csv(directoryPath + "/" + filename, low_memory=False, sep="$", error_bad_lines=False)
                demo_df.drop(
                    ['caseversion', 'i_f_code', 'lit_ref', 'event_dt', 'auth_num', 'fda_dt', 'age_cod', 'age_grp',
                     'e_sub', 'rept_dt', 'to_mfr', 'reporter_country'], inplace=True, axis=1, errors='ignore')
                demo_df = demo_df.loc[(demo_df['wt_cod'] == 'KG')]
                demo_df = demo_df[pd.notnull(demo_df['age'])]
                demo_df = demo_df[1:]
                demo = demo.append(demo_df, ignore_index=True)
            if "DRUG" in filename:
                durg_df = pd.read_csv(directoryPath + "/" + filename, low_memory=False, sep="$", error_bad_lines=False)
                durg_df.drop(['drug_seq', 'val_vbm', 'dose_vbm', 'cum_dose_chr', 'prod_ai', 'cum_dose_unit', 'dechal',
                              'rechal', 'lot_num', 'exp_dt', 'nda_num'], inplace=True, axis=1, errors='ignore')
                durg_df = durg_df[pd.notnull(durg_df['dose_amt'])]
                durg_df = durg_df[pd.notnull(durg_df['dose_unit'])]
                durg_df = durg_df.loc[(durg_df['role_cod'] == 'PS')]
                durg_df = durg_df[1:]
                drug = drug.append(durg_df, ignore_index=True)
            if "REAC" in filename:
                reac_df = pd.read_csv(directoryPath + "/" + filename, low_memory=False, sep="$", error_bad_lines=False)
                reac_df = reac_df.groupby('primaryid')
                reac_df = reac_df.filter(lambda x: len(x) == 1)
                reac_df = reac_df[1:]
                reaction = reaction.append(reac_df, ignore_index=True)
            if "OUTC" in filename:
                out_df = pd.read_csv(directoryPath + "/" + filename, low_memory=False, sep="$", error_bad_lines=False)
                out_df = out_df.groupby('primaryid')
                out_df = out_df.filter(lambda x: len(x) == 1)
                out_df = out_df[1:]
                outcome = outcome.append(out_df, ignore_index=True)

        demo['sex'] = np.where(pd.isnull(demo['sex']), demo['gndr_cod'], demo['sex'])
        demo.drop(['gndr_cod'], inplace=True, axis=1, errors='ignore')
        demo_durg_df = pd.merge(drug, demo, on=('primaryid', 'caseid'), how='left')
        demodurgreact_df = pd.merge(demo_durg_df, reaction, on=('primaryid', 'caseid'), how='inner')
        demodrugreactout_df = pd.merge(demodurgreact_df, outcome, on=('primaryid', 'caseid'), how='inner')
        demodrugreactout_df.drop(['drug_rec_act'], inplace=True, axis=1, errors='ignore')
        demodrugreactout_df['occp_cod'] = demodrugreactout_df['occp_cod'].fillna('OT')
        demodrugreactout_df['rept_cod'] = demodrugreactout_df['rept_cod'].fillna('EXP')
        demodrugreactout_df['mfr_sndr'] = demodrugreactout_df['mfr_sndr'].fillna('Others')
        demodrugreactout_df['route'] = demodrugreactout_df['route'].fillna('Unknown')
        demodrugreactout_df['dose_form'] = demodrugreactout_df['dose_form'].fillna('Others')
        demodrugreactout_df['dose_freq'] = demodrugreactout_df['dose_freq'].fillna('Others')
        demodrugreactout_df.to_csv(self.output().path, header=True, index=False);

    def output(self):
        return luigi.LocalTarget('MergedFile.csv')


if __name__ == '__main__':
    source_dir = "FAERSsrc"
    data_dir = "FAERSdata"
    if not os.path.isdir(source_dir):
        os.makedirs(source_dir)
    if not os.path.isdir(data_dir):
        os.makedirs(data_dir)
    luigi.run()

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

顾挽 2022-09-18 17:57:28

问题已解决,完整代码见GitHub:https://github.com/Judenpech/...

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文