Tensorflow 计算loss时的维度问题
在跑一个简单的CNN模型, 图片为64X64
第一层卷积为8X5X5,池化为5X5,步长为2;
第二层卷积为16X5X5,池化为5X5,步长为2;
第三层卷积为32X1X1,池化为全局池化 16X16
输出1X1X32的特征值,展平后输入全连接层
第四层全连接层 输出为2维
算出来最后输入全连接层的特征值应该有32个 输出2个值
batch_size为20
但在使用sparse_softmax_cross_entropy计算交叉熵损失的时候 一直报维度错误:
logits and labels must have the same first dimension, got logits shape [1280,2] and labels shape [20]
代码如下:
# -*- coding: utf-8 -*-
# Steganalysis with High-Level API
# import dataset
import load_record
import tensorflow as tf
import numpy as np
import layer_module
flags = tf.app.flags
flags.DEFINE_integer('num_epochs', 10, 'Number of training epochs')
flags.DEFINE_integer('batch_size', 20, 'Batch size')
flags.DEFINE_float('learning_rate', 0.01, 'Learning rate')
flags.DEFINE_float('dropout_rate', 0.5, 'Dropout rate')
flags.DEFINE_string('train_dataset', './dataset/train512.tfrecords',
'Filename of training dataset')
flags.DEFINE_string('eval_dataset', './dataset/test512.tfrecords',
'Filename of evaluation dataset')
flags.DEFINE_string('test_dataset', './dataset/test512.tfrecords',
'Filename of testing dataset')
flags.DEFINE_string('model_dir', 'models/steganalysis_cnn_model',
'Filename of testing dataset')
FLAGS = flags.FLAGS
def stg_model_fn(features, labels, mode):
# Input Layer
x = tf.reshape(features, [-1, 64, 64, 1])
# print(x)
x = layer_module.conv_group(
inputs = x,
activation = "tanh",
filters = 8,
kernel_size = [5, 5],
pool_size = 5,
strides = 2,
abs_layer = True,
pool_padding = "same")
print(x)
x = layer_module.conv_group(
inputs = x,
filters = 16,
activation = "tanh",
kernel_size = [5, 5],
pool_size = 5,
strides = 2,
abs_layer = False,
pool_padding = "same")
print(x)
x = layer_module.conv_group(
inputs = x,
filters = 32,
activation = "relu",
kernel_size = [1, 1],
pool_size = 16,
strides = 1,
abs_layer = False,
pool_padding = "valid")
print(x)
x = tf.reshape(x, [-1, 32])
x = tf.layers.dense(inputs = x, units = 2)
# x = tf.contrib.layers.flatten(inputs = x)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(tf.nn.softmax(x, name="softmax_tensor").eval(), labels.shape)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=x, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(x, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=2)
loss = tf.losses.sparse_softmax_cross_entropy(labels = labels, logits = x)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def parser(record):
keys_to_features = {
'img_raw': tf.FixedLenFeature((), tf.string),
'label': tf.FixedLenFeature((), tf.int64)
}
parsed = tf.parse_single_example(record, keys_to_features)
image = tf.decode_raw(parsed['img_raw'], tf.uint8)
image = tf.cast(image, tf.float32)
label = tf.cast(parsed['label'], tf.int32)
return image, label
def save_hp_to_json():
'''Save hyperparameters to a json file'''
filename = os.path.join(FLAGS.model_dir, 'hparams.json')
hparams = FLAGS.flag_values_dict()
with open(filename, 'w') as f:
json.dump(hparams, f, indent=4, sort_keys=True)
def main(unused_argv):
def train_input_fn():
train_dataset = tf.data.TFRecordDataset(FLAGS.train_dataset)
train_dataset = train_dataset.map(parser)
train_dataset = train_dataset.repeat(FLAGS.num_epochs)
train_dataset = train_dataset.batch(FLAGS.batch_size)
train_iterator = train_dataset.make_one_shot_iterator()
features, labels = train_iterator.get_next()
return features, labels
def eval_input_fn():
eval_dataset = tf.data.TFRecordDataset(FLAGS.eval_dataset)
eval_dataset = eval_dataset.map(parser)
# eval_dataset = eval_dataset.repeat(FLAGS.num_epochs)
eval_dataset = eval_dataset.batch(FLAGS.batch_size)
eval_iterator = eval_dataset.make_one_shot_iterator()
features, labels = eval_iterator.get_next()
return features, labels
steg_classifier = tf.estimator.Estimator(
model_fn=stg_model_fn, model_dir=FLAGS.model_dir)
# Train
steg_classifier.train(input_fn=train_input_fn)
# Evaluation
eval_results = steg_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
tf.logging.info('Saving hyperparameters ...')
if __name__ == "__main__":
tf.app.run()
我不懂那个1280是怎么来的 明明batch_size只有20
补充layer_module的代码:
def conv_group(inputs, activation, filters, kernel_size, pool_size, strides, pool_padding, abs_layer):
x = tf.layers.conv2d(
inputs = inputs,
filters = filters,
kernel_size = kernel_size,
padding = "same")
if (abs_layer):
x = tf.abs(x)
x = tf.layers.batch_normalization(inputs = x)
if (activation == "relu"):
x = tf.nn.relu(x)
elif (activation == "tanh"):
x = tf.nn.tanh(x)
print(x)
x = tf.layers.average_pooling2d(
inputs = x,
padding = pool_padding,
pool_size = pool_size,
strides = strides)
print(x)
return x
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
已解决, reshape的问题。
图片输入时是512X512X1,reshape成64X64(这是错误的用法)之后,由于shape的第一个元素是-1,所以意味着batch_size会改变大小来使得总尺寸不变。 所以batch_size变成了20X(512/64)X(512/64) = 20X8X8 = 1280