Algorithm for minimum sum subvector
The problem found in programming pearls column 8 is as follows:
Given the real vector x[n], compute the maximum sum found in any contiguous subvector.
The final solution provided is of O(n) complexity which is as follows:
std::vector<int> x;
int max_so_far = 0;
int max_here = 0;
for (std::size_t i = 0; i < x.size(); ++i)
{
max_here = std::max(max_here + x[i], 0);
max_so_far = std::max(max_so_far, max_here);
}
I would like to know how does one go about modifing the above algorithm to provide the minimum sum.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
You only need to invert the sign of each element in
x
and then run the algorithm: