如何实现去除所有集合内可以组成加法运算的子集
给一组数列,若数列内存在一个数等于数列内其他一些数的和,则去除那些数。此删除操作可重复操作直到无法继续找到满足条件的数进行删除。请写出一个函数,输入为整型数组,经过函数内一系列删除操作后得到一个最短数组,返回最短数组的长度。
比如{48,20,1,3,4,6,9,24}由于(4+20+24=48)所以去除4,20,24,48,余下{1,3,6,9}后,由于3+6=9,去除{3,6,9}得到{1},由于数组长度为1,返回1
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这个问题目测NPC妥妥的。可以分“两步走”。
查找所有“加法子集”。取每个元素为可能的和,利用subset sum算法逐一求解。
寻找互斥的加法子集的最大并集:参考set packing算法,用线性规划求解。
以下用 Mathematica 详细描述下算法。
查找加法子集
要列举集合中所有构成加法式子的数字(允许数字是负数,也允许重复数字),首先借subset sum算法(带缓存的递归),列举出其和是某给定数字的子集。
代码对
q
进行递归调用并缓存结果。具体的递归推导可参考这个问题。注意对求出的加法子集内部进行了排序,最后进行并集操作以删除重复项。用例:这个给定的数字可能是本问题集合中的任意元素,所以用
subsetSum
遍历集合中的每个元素,用它和剩下的元素尝试组成加式。最后并删除重复的组合,即为可能的全部加法子集了。上面代码同样进行了集合内部排序操作,因为把和加入集合时可能打乱顺序。而且删除了加数个数少于2个的情况。用例:
查找互斥最大并集
得到加法子集后,用带权重的set packing查找它们中互斥最大并集。用线性规划语言描述就是
$$\array{\text{maximize} & \sum{|s_i|\ x_i} & \text{最大化并集中的元素个数} \\ \text{subject to} & \sum {m_i\ x_i} \leq 1 & \text{选中的集合是互斥的} \\ & x_i \in \{0, 1\} & \text{$x_i=1$则选择集合$i$,否则放弃集合$i$}}$$
Mathematica有提供内置的
LinearProgramming
函数:测试
题主的例子:
随机生成一个16个元素的集合。
用
pickSumList
查找结果,并高亮显示作为和的元素:剩下的元素: