学习Web Scraping with Python时遇到的BFS的问题?
请教一个问题,今天在学习Web Scraping with Python这本书时,书P128页上为了解决Six Degrees of Wikipedia,对爬下来储存在MySQL中的数据作了搜索。
数据用了两个表记录,分别是:
pages:
+---------+--------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+--------------+------+-----+-------------------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| url | varchar(255) | NO | | NULL | |
| created | timestamp | NO | | CURRENT_TIMESTAMP | |
+---------+--------------+------+-----+-------------------+----------------+
links:
+------------+-----------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+-----------+------+-----+-------------------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| fromPageID | int(11) | YES | | NULL | |
| toPageID | int(11) | YES | | NULL | |
| created | timestamp | NO | | CURRENT_TIMESTAMP | |
+------------+-----------+------+-----+-------------------+----------------+
搜索的算法如下:
from urllib.request import urlopen
from bs4 import BeautifulSoup
import pymysql
conn = pymysql.connect(host = '127.0.0.1', user = 'root', passwd = 'pai433832',
db = 'mysql', charset = 'utf8')
cur = conn.cursor()
cur.execute("USE wikipedia")
class SolutionFound(RuntimeError):
def __init__(self, message):
self.message = message
def getLinks(fromPageId):
cur.execute("SELECT toPageId FROM links WHERE fromPageID = %s",
(fromPageId))
if cur.rowcount == 0:
return None
else:
return [x[0] for x in cur.fetchall()]
def constructDict(currentPageId):
links = getLinks(currentPageId)
if links:
return dict(zip(links, [{}] * len(links)))
return {}
# The link tree may either be empty or contain multiple links
def searchDepth(targetPageId, currentPageId, linkTree, depth):
# print(str(depth) + '\t' + str(currentPageId)) # debug
if depth == 0:
# Stop recursing and return, regardless
return linkTree
if not linkTree:
linkTree = constructDict(currentPageId)
if not linkTree:
# No links found. Cannot continue at this node
return {}
if targetPageId in linkTree.keys():
print("TARGET " + str(targetPageId) + " FOUND!")
raise SolutionFound("PAGE: " + str(currentPageId))
for branchKey, branchValue in linkTree.items():
try:
# Recurse here to continue building the tree
linkTree[branchKey] = searchDepth(targetPageId, branchKey,
branchValue, depth - 1)
except SolutionFound as e:
print(e.message)
raise SolutionFound("PAGE: " + str(currentPageId))
return linkTree
try:
searchDepth(14000, 1, {}, 4)
print("No solution found")
except SolutionFound as e:
print(e.message)
作者表示此处用了广度优先搜索,然而我觉得当在递归调用 searchDepth 函数时,使用的必然是深度优先,因此上述代码事实上是不是的确并非广度优先搜索而是深度优先搜索?然而对于这种情况是不是的确是广度优先搜索更好?如果原文的代码不是广度优先,那么广度优先应当如何处理呢?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
代码确实是深度优先搜索(dfs)。
如果要改成广度优先搜索(bfs)的话,就用一个队列来维护待访问的url列表,每次从队列首部取url访问,然后把新提取出来的url集合添加到队列的尾部。
深度优先搜索跟广度优先搜索没有必然的优劣之分。如果目标位于层数比较小的地方,bfs可以很快找到解,如果目标所处的层次很深,bfs需要扩展很多节点,dfs反倒是有可能很快找到解。