如何把Spark RDD中的内容按行打印出来?
请问我想把最后wordcounts里的内容按行打印出来要怎样编写代码?,向下面这样:
means 1
under 2
this 3
...
Hadoop 流行的一个通用的数据流模式是 MapReduce。Spark 能很容易地实现 MapReduce:
scala> val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
wordCounts: spark.RDD[(String, Int)] = spark.ShuffledAggregatedRDD@71f027b8
这里,我们结合 flatMap, map 和 reduceByKey 来计算文件里每个单词出现的数量,它的结果是包含一组(String, Int) 键值对
的 RDD。我们可以使用 [collect] 操作在我们的 shell 中收集单词的数量:
scala> wordCounts.collect()
res6: Array[(String, Int)] = Array((means,1), (under,2), (this,3), (Because,1), (Python,2), (agree,1), (cluster.,1), ...)
请问我想把最后wordcounts里的内容按行打印出来要怎样编写代码?,向下面这样:
means 1
under 2
this 3
...
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
你这个后面接一个saveAsTextFile("E:/text.txt")
打印控制台是 .foreach(println(_))
可以写个函数,我用python,你可以类比。