如何理解这段经典的宏定义?
#define POW(c) (1 << (c)) //2^c
#define MASK(c) (((unsigned long) -1) / POW(POW(c)) + 1)) //以2^c位为单位分组,相间的全0和全1
// MASK(0) = 55555555(h) = 01010101010101010101010101010101(b)
// MASK(1) = 33333333(h) = 00110011001100110011001100110011(b)
// MASK(2) = 0f0f0f0f(h) = 00001111000011110000111100001111(b)
// MASK(3) = 00ff00ff(h) = 00000000111111110000000011111111(b)
// MASK(4) = 0000ffff(h) = 00000000000000001111111111111111(b)
这是“求二进制中数位1的个数”( see: http://www.cnblogs.com/kaikai/archive/2006/02/15/330901.html)平行算法中经典的宏定义,POW 、 (unsigned long) -1) 和 算法思想 都可以理解,但是 (((unsigned long) -1) / POW(POW(c)) + 1)) 产生的“以2^c位为单位分组,相间的全0和全1”该如何理解呢?(一个全1的无符号数字除以2的2的幂的幂加1,为什么会产生这样相间的二进制结果呢?)
找了一些资料都只有对算法的解释没有对这个宏定义的解释,希望大神解答!~
Thank you!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
自问自答一下。
知乎上的提问的回答:http://www.zhihu.com/question/30045208
注意所有的数都是二进制,大概与二进制的加法与乘法有关,实际上跟十进制的运算规则是类似的。
这一点需要深入理解。
再推荐一本最近闲看的书:《编码的奥秘》,里面有对进制深入浅出的探讨。
这个怎么说呢,因为
选择
2^(2^n)+1
是为了能除尽,不会有余数,其实只要是1...n个0...1
的这种都可以出现类似的效果