Josephus Problem

发布于 2022-09-01 06:55:58 字数 1237 浏览 18 评论 0

Description

Josephus Problem is an ancient problem named for Flavius Josephus. There are people standing in a circle waiting to be executed. The counting out begins at the first point in the circle and proceeds around the circle in a fixed direction. In each step, one person is skipped and the next person is executed. The elimination proceeds around the circle (which is becoming smaller and smaller as the executed people are removed), until only the last person remains, who is given freedom.

For example, if there are 10 people in the circle, the executed order is 2, 4, 6, 8, 10, 3, 7, 1, 9. So the 5th person survives.

Now we define a function J(n) to be the survivor’s number when there are n person in the circle, and J^2(n)=J(J(n)), for instance J^2(10)=J(J(10))=J(5)=3, and J^3(n)=J(J(J(n))), and so on. Could you calculate J^m(n)?

输入格式

The input consists of a number of cases.
Each case contains integers n and m. 0<n, m<=10^9
The input is terminated by a case with m=n=0

输出格式

For each case, print the number J^m(n)

输入样例

10 2
10 1
20 1
0 0

输出样例

3
5
9

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文