返回介绍

solution / 2000-2099 / 2008.Maximum Earnings From Taxi / README_EN

发布于 2024-06-17 01:03:12 字数 12148 浏览 0 评论 0 收藏 0

2008. Maximum Earnings From Taxi

中文文档

Description

There are n points on a road you are driving your taxi on. The n points on the road are labeled from 1 to n in the direction you are going, and you want to drive from point 1 to point n to make money by picking up passengers. You cannot change the direction of the taxi.

The passengers are represented by a 0-indexed 2D integer array rides, where rides[i] = [starti, endi, tipi] denotes the ith passenger requesting a ride from point starti to point endi who is willing to give a tipi dollar tip.

For each passenger i you pick up, you earn endi - starti + tipi dollars. You may only drive at most one passenger at a time.

Given n and rides, return _the maximum number of dollars you can earn by picking up the passengers optimally._

Note: You may drop off a passenger and pick up a different passenger at the same point.

 

Example 1:

Input: n = 5, rides = [[2,5,4],[1,5,1]]
Output: 7
Explanation: We can pick up passenger 0 to earn 5 - 2 + 4 = 7 dollars.

Example 2:

Input: n = 20, rides = [[1,6,1],[3,10,2],[10,12,3],[11,12,2],[12,15,2],[13,18,1]]
Output: 20
Explanation: We will pick up the following passengers:
- Drive passenger 1 from point 3 to point 10 for a profit of 10 - 3 + 2 = 9 dollars.
- Drive passenger 2 from point 10 to point 12 for a profit of 12 - 10 + 3 = 5 dollars.
- Drive passenger 5 from point 13 to point 18 for a profit of 18 - 13 + 1 = 6 dollars.
We earn 9 + 5 + 6 = 20 dollars in total.

 

Constraints:

  • 1 <= n <= 105
  • 1 <= rides.length <= 3 * 104
  • rides[i].length == 3
  • 1 <= starti < endi <= n
  • 1 <= tipi <= 105

Solutions

Solution 1: Memoization Search + Binary Search

First, we sort $rides$ in ascending order by $start$. Then we design a function $dfs(i)$, which represents the maximum tip that can be obtained from accepting orders starting from the $i$-th passenger. The answer is $dfs(0)$.

The calculation process of the function $dfs(i)$ is as follows:

For the $i$-th passenger, we can choose to accept or not to accept the order. If we don't accept the order, the maximum tip that can be obtained is $dfs(i + 1)$. If we accept the order, we can use binary search to find the first passenger encountered after the drop-off point of the $i$-th passenger, denoted as $j$. The maximum tip that can be obtained is $dfs(j) + end_i - start_i + tip_i$. Take the larger of the two. That is:

$$ dfs(i) = \max(dfs(i + 1), dfs(j) + end_i - start_i + tip_i) $$

Where $j$ is the smallest index that satisfies $start_j \ge end_i$, which can be obtained by binary search.

In this process, we can use memoization search to save the answer of each state to avoid repeated calculations.

The time complexity is $O(m \times \log m)$, and the space complexity is $O(m)$. Here, $m$ is the length of $rides$.

class Solution:
  def maxTaxiEarnings(self, n: int, rides: List[List[int]]) -> int:
    @cache
    def dfs(i: int) -> int:
      if i >= len(rides):
        return 0
      st, ed, tip = rides[i]
      j = bisect_left(rides, ed, lo=i + 1, key=lambda x: x[0])
      return max(dfs(i + 1), dfs(j) + ed - st + tip)

    rides.sort()
    return dfs(0)
class Solution {
  private int m;
  private int[][] rides;
  private Long[] f;

  public long maxTaxiEarnings(int n, int[][] rides) {
    Arrays.sort(rides, (a, b) -> a[0] - b[0]);
    m = rides.length;
    f = new Long[m];
    this.rides = rides;
    return dfs(0);
  }

  private long dfs(int i) {
    if (i >= m) {
      return 0;
    }
    if (f[i] != null) {
      return f[i];
    }
    int[] r = rides[i];
    int st = r[0], ed = r[1], tip = r[2];
    int j = search(ed, i + 1);
    return f[i] = Math.max(dfs(i + 1), dfs(j) + ed - st + tip);
  }

  private int search(int x, int l) {
    int r = m;
    while (l < r) {
      int mid = (l + r) >> 1;
      if (rides[mid][0] >= x) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }
}
class Solution {
public:
  long long maxTaxiEarnings(int n, vector<vector<int>>& rides) {
    sort(rides.begin(), rides.end());
    int m = rides.size();
    long long f[m];
    memset(f, -1, sizeof(f));
    function<long long(int)> dfs = [&](int i) -> long long {
      if (i >= m) {
        return 0;
      }
      if (f[i] != -1) {
        return f[i];
      }
      auto& r = rides[i];
      int st = r[0], ed = r[1], tip = r[2];
      int j = lower_bound(rides.begin() + i + 1, rides.end(), ed, [](auto& a, int val) { return a[0] < val; }) - rides.begin();
      return f[i] = max(dfs(i + 1), dfs(j) + ed - st + tip);
    };
    return dfs(0);
  }
};
func maxTaxiEarnings(n int, rides [][]int) int64 {
  sort.Slice(rides, func(i, j int) bool { return rides[i][0] < rides[j][0] })
  m := len(rides)
  f := make([]int64, m)
  var dfs func(int) int64
  dfs = func(i int) int64 {
    if i >= m {
      return 0
    }
    if f[i] == 0 {
      st, ed, tip := rides[i][0], rides[i][1], rides[i][2]
      j := sort.Search(m, func(j int) bool { return rides[j][0] >= ed })
      f[i] = max(dfs(i+1), int64(ed-st+tip)+dfs(j))
    }
    return f[i]
  }
  return dfs(0)
}
function maxTaxiEarnings(n: number, rides: number[][]): number {
  rides.sort((a, b) => a[0] - b[0]);
  const m = rides.length;
  const f: number[] = Array(m).fill(-1);
  const search = (x: number, l: number): number => {
    let r = m;
    while (l < r) {
      const mid = (l + r) >> 1;
      if (rides[mid][0] >= x) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  };
  const dfs = (i: number): number => {
    if (i >= m) {
      return 0;
    }
    if (f[i] === -1) {
      const [st, ed, tip] = rides[i];
      const j = search(ed, i + 1);
      f[i] = Math.max(dfs(i + 1), dfs(j) + ed - st + tip);
    }
    return f[i];
  };
  return dfs(0);
}

Solution 2: Dynamic Programming + Binary Search

We can change the memoization search in Solution 1 to dynamic programming.

First, sort $rides$, this time we sort by $end$ in ascending order. Then define $f[i]$, which represents the maximum tip that can be obtained from the first $i$ passengers. Initially, $f[0] = 0$, and the answer is $f[m]$.

For the $i$-th passenger, we can choose to accept or not to accept the order. If we don't accept the order, the maximum tip that can be obtained is $f[i-1]$. If we accept the order, we can use binary search to find the last passenger whose drop-off point is not greater than $start_i$ before the $i$-th passenger gets on the car, denoted as $j$. The maximum tip that can be obtained is $f[j] + end_i - start_i + tip_i$. Take the larger of the two. That is:

$$ f[i] = \max(f[i - 1], f[j] + end_i - start_i + tip_i) $$

Where $j$ is the largest index that satisfies $end_j \le start_i$, which can be obtained by binary search.

The time complexity is $O(m \times \log m)$, and the space complexity is $O(m)$. Here, $m$ is the length of $rides$.

Similar problems:

class Solution:
  def maxTaxiEarnings(self, n: int, rides: List[List[int]]) -> int:
    rides.sort(key=lambda x: x[1])
    f = [0] * (len(rides) + 1)
    for i, (st, ed, tip) in enumerate(rides, 1):
      j = bisect_left(rides, st + 1, hi=i, key=lambda x: x[1])
      f[i] = max(f[i - 1], f[j] + ed - st + tip)
    return f[-1]
class Solution {
  public long maxTaxiEarnings(int n, int[][] rides) {
    Arrays.sort(rides, (a, b) -> a[1] - b[1]);
    int m = rides.length;
    long[] f = new long[m + 1];
    for (int i = 1; i <= m; ++i) {
      int[] r = rides[i - 1];
      int st = r[0], ed = r[1], tip = r[2];
      int j = search(rides, st + 1, i);
      f[i] = Math.max(f[i - 1], f[j] + ed - st + tip);
    }
    return f[m];
  }

  private int search(int[][] nums, int x, int r) {
    int l = 0;
    while (l < r) {
      int mid = (l + r) >> 1;
      if (nums[mid][1] >= x) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }
}
class Solution {
public:
  long long maxTaxiEarnings(int n, vector<vector<int>>& rides) {
    sort(rides.begin(), rides.end(), [](const vector<int>& a, const vector<int>& b) { return a[1] < b[1]; });
    int m = rides.size();
    vector<long long> f(m + 1);
    for (int i = 1; i <= m; ++i) {
      auto& r = rides[i - 1];
      int st = r[0], ed = r[1], tip = r[2];
      auto it = lower_bound(rides.begin(), rides.begin() + i, st + 1, [](auto& a, int val) { return a[1] < val; });
      int j = distance(rides.begin(), it);
      f[i] = max(f[i - 1], f[j] + ed - st + tip);
    }
    return f.back();
  }
};
func maxTaxiEarnings(n int, rides [][]int) int64 {
  sort.Slice(rides, func(i, j int) bool { return rides[i][1] < rides[j][1] })
  m := len(rides)
  f := make([]int64, m+1)
  for i := 1; i <= m; i++ {
    r := rides[i-1]
    st, ed, tip := r[0], r[1], r[2]
    j := sort.Search(m, func(j int) bool { return rides[j][1] >= st+1 })
    f[i] = max(f[i-1], f[j]+int64(ed-st+tip))
  }
  return f[m]
}
function maxTaxiEarnings(n: number, rides: number[][]): number {
  rides.sort((a, b) => a[1] - b[1]);
  const m = rides.length;
  const f: number[] = Array(m + 1).fill(0);
  const search = (x: number, r: number): number => {
    let l = 0;
    while (l < r) {
      const mid = (l + r) >> 1;
      if (rides[mid][1] >= x) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  };
  for (let i = 1; i <= m; ++i) {
    const [st, ed, tip] = rides[i - 1];
    const j = search(st + 1, i);
    f[i] = Math.max(f[i - 1], f[j] + ed - st + tip);
  }
  return f[m];
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文