返回介绍

solution / 0600-0699 / 0688.Knight Probability in Chessboard / README_EN

发布于 2024-06-17 01:03:35 字数 8259 浏览 0 评论 0 收藏 0

688. Knight Probability in Chessboard

中文文档

Description

On an n x n chessboard, a knight starts at the cell (row, column) and attempts to make exactly k moves. The rows and columns are 0-indexed, so the top-left cell is (0, 0), and the bottom-right cell is (n - 1, n - 1).

A chess knight has eight possible moves it can make, as illustrated below. Each move is two cells in a cardinal direction, then one cell in an orthogonal direction.

Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.

The knight continues moving until it has made exactly k moves or has moved off the chessboard.

Return _the probability that the knight remains on the board after it has stopped moving_.

 

Example 1:

Input: n = 3, k = 2, row = 0, column = 0
Output: 0.06250
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.

Example 2:

Input: n = 1, k = 0, row = 0, column = 0
Output: 1.00000

 

Constraints:

  • 1 <= n <= 25
  • 0 <= k <= 100
  • 0 <= row, column <= n - 1

Solutions

Solution 1: Dynamic Programming

Let $f[h][i][j]$ denotes the probability that the knight is still on the chessboard after $h$ steps starting from the position $(i, j)$. Then the final answer is $f[k][row][column]$.

When $h = 0$, the knight is always on the chessboard, so $f[0][i][j] = 1$.

When $h \gt 0$, the probability that the knight is on the position $(i, j)$ can be transferred from the probability on its $8$ adjacent positions, which are:

$$ f[h][i][j] = \sum_{a, b} f[h - 1][a][b] \times \frac{1}{8} $$

where $(a, b)$ is one of the $8$ adjacent positions.

The final answer is $f[k][row][column]$.

The time complexity is $O(k \times n^2)$, and the space complexity is $O(k \times n^2)$. Here $k$ and $n$ are the given steps and the chessboard size, respectively.

class Solution:
  def knightProbability(self, n: int, k: int, row: int, column: int) -> float:
    f = [[[0] * n for _ in range(n)] for _ in range(k + 1)]
    for i in range(n):
      for j in range(n):
        f[0][i][j] = 1
    for h in range(1, k + 1):
      for i in range(n):
        for j in range(n):
          for a, b in pairwise((-2, -1, 2, 1, -2, 1, 2, -1, -2)):
            x, y = i + a, j + b
            if 0 <= x < n and 0 <= y < n:
              f[h][i][j] += f[h - 1][x][y] / 8
    return f[k][row][column]
class Solution {
  public double knightProbability(int n, int k, int row, int column) {
    double[][][] f = new double[k + 1][n][n];
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        f[0][i][j] = 1;
      }
    }
    int[] dirs = {-2, -1, 2, 1, -2, 1, 2, -1, -2};
    for (int h = 1; h <= k; ++h) {
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
          for (int p = 0; p < 8; ++p) {
            int x = i + dirs[p], y = j + dirs[p + 1];
            if (x >= 0 && x < n && y >= 0 && y < n) {
              f[h][i][j] += f[h - 1][x][y] / 8;
            }
          }
        }
      }
    }
    return f[k][row][column];
  }
}
class Solution {
public:
  double knightProbability(int n, int k, int row, int column) {
    double f[k + 1][n][n];
    memset(f, 0, sizeof(f));
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        f[0][i][j] = 1;
      }
    }
    int dirs[9] = {-2, -1, 2, 1, -2, 1, 2, -1, -2};
    for (int h = 1; h <= k; ++h) {
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
          for (int p = 0; p < 8; ++p) {
            int x = i + dirs[p], y = j + dirs[p + 1];
            if (x >= 0 && x < n && y >= 0 && y < n) {
              f[h][i][j] += f[h - 1][x][y] / 8;
            }
          }
        }
      }
    }
    return f[k][row][column];
  }
};
func knightProbability(n int, k int, row int, column int) float64 {
  f := make([][][]float64, k+1)
  for h := range f {
    f[h] = make([][]float64, n)
    for i := range f[h] {
      f[h][i] = make([]float64, n)
      for j := range f[h][i] {
        f[0][i][j] = 1
      }
    }
  }
  dirs := [9]int{-2, -1, 2, 1, -2, 1, 2, -1, -2}
  for h := 1; h <= k; h++ {
    for i := 0; i < n; i++ {
      for j := 0; j < n; j++ {
        for p := 0; p < 8; p++ {
          x, y := i+dirs[p], j+dirs[p+1]
          if x >= 0 && x < n && y >= 0 && y < n {
            f[h][i][j] += f[h-1][x][y] / 8
          }
        }
      }
    }
  }
  return f[k][row][column]
}
function knightProbability(n: number, k: number, row: number, column: number): number {
  const f = new Array(k + 1)
    .fill(0)
    .map(() => new Array(n).fill(0).map(() => new Array(n).fill(0)));
  for (let i = 0; i < n; ++i) {
    for (let j = 0; j < n; ++j) {
      f[0][i][j] = 1;
    }
  }
  const dirs = [-2, -1, 2, 1, -2, 1, 2, -1, -2];
  for (let h = 1; h <= k; ++h) {
    for (let i = 0; i < n; ++i) {
      for (let j = 0; j < n; ++j) {
        for (let p = 0; p < 8; ++p) {
          const x = i + dirs[p];
          const y = j + dirs[p + 1];
          if (x >= 0 && x < n && y >= 0 && y < n) {
            f[h][i][j] += f[h - 1][x][y] / 8;
          }
        }
      }
    }
  }
  return f[k][row][column];
}
const DIR: [(i32, i32); 8] = [
  (-2, -1),
  (2, -1),
  (-1, -2),
  (1, -2),
  (2, 1),
  (-2, 1),
  (1, 2),
  (-1, 2),
];
const P: f64 = 1.0 / 8.0;

impl Solution {
  #[allow(dead_code)]
  pub fn knight_probability(n: i32, k: i32, row: i32, column: i32) -> f64 {
    // Here dp[i][j][k] represents through `i` steps, the probability that the knight stays on the board
    // Starts from row: `j`, column: `k`
    let mut dp: Vec<Vec<Vec<f64>>> =
      vec![vec![vec![0 as f64; n as usize]; n as usize]; k as usize + 1];

    // Initialize the dp vector, since dp[0][j][k] should be 1
    for j in 0..n as usize {
      for k in 0..n as usize {
        dp[0][j][k] = 1.0;
      }
    }

    // Begin the actual dp process
    for i in 1..=k {
      for j in 0..n {
        for k in 0..n {
          for (dx, dy) in DIR {
            let x = j + dx;
            let y = k + dy;
            if Self::check_bounds(x, y, n, n) {
              dp[i as usize][j as usize][k as usize] +=
                P * dp[(i as usize) - 1][x as usize][y as usize];
            }
          }
        }
      }
    }

    dp[k as usize][row as usize][column as usize]
  }

  #[allow(dead_code)]
  fn check_bounds(i: i32, j: i32, n: i32, m: i32) -> bool {
    i >= 0 && i < n && j >= 0 && j < m
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文