返回介绍

solution / 0100-0199 / 0114.Flatten Binary Tree to Linked List / README_EN

发布于 2024-06-17 01:04:04 字数 9073 浏览 0 评论 0 收藏 0

114. Flatten Binary Tree to Linked List

中文文档

Description

Given the root of a binary tree, flatten the tree into a "linked list":

  • The "linked list" should use the same TreeNode class where the right child pointer points to the next node in the list and the left child pointer is always null.
  • The "linked list" should be in the same order as a pre-order traversal of the binary tree.

 

Example 1:

Input: root = [1,2,5,3,4,null,6]
Output: [1,null,2,null,3,null,4,null,5,null,6]

Example 2:

Input: root = []
Output: []

Example 3:

Input: root = [0]
Output: [0]

 

Constraints:

  • The number of nodes in the tree is in the range [0, 2000].
  • -100 <= Node.val <= 100

 

Follow up: Can you flatten the tree in-place (with O(1) extra space)?

Solutions

Solution 1: Find Predecessor Node

The visit order of preorder traversal is "root, left subtree, right subtree". After the last node of the left subtree is visited, the right subtree node of the root node will be visited next.

Therefore, for the current node, if its left child node is not null, we find the rightmost node of the left subtree as the predecessor node, and then assign the right child node of the current node to the right child node of the predecessor node. Then assign the left child node of the current node to the right child node of the current node, and set the left child node of the current node to null. Then take the right child node of the current node as the next node and continue processing until all nodes are processed.

The time complexity is $O(n)$, where $n$ is the number of nodes in the tree. The space complexity is $O(1)$.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def flatten(self, root: Optional[TreeNode]) -> None:
    """
    Do not return anything, modify root in-place instead.
    """
    while root:
      if root.left:
        pre = root.left
        while pre.right:
          pre = pre.right
        pre.right = root.right
        root.right = root.left
        root.left = None
      root = root.right
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  public void flatten(TreeNode root) {
    while (root != null) {
      if (root.left != null) {
        // 找到当前节点左子树的最右节点
        TreeNode pre = root.left;
        while (pre.right != null) {
          pre = pre.right;
        }

        // 将左子树的最右节点指向原来的右子树
        pre.right = root.right;

        // 将当前节点指向左子树
        root.right = root.left;
        root.left = null;
      }
      root = root.right;
    }
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  void flatten(TreeNode* root) {
    while (root) {
      if (root->left) {
        TreeNode* pre = root->left;
        while (pre->right) {
          pre = pre->right;
        }
        pre->right = root->right;
        root->right = root->left;
        root->left = nullptr;
      }
      root = root->right;
    }
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func flatten(root *TreeNode) {
  for root != nil {
    if root.Left != nil {
      pre := root.Left
      for pre.Right != nil {
        pre = pre.Right
      }
      pre.Right = root.Right
      root.Right = root.Left
      root.Left = nil
    }
    root = root.Right
  }
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

/**
 Do not return anything, modify root in-place instead.
 */
function flatten(root: TreeNode | null): void {
  while (root !== null) {
    if (root.left !== null) {
      let pre = root.left;
      while (pre.right !== null) {
        pre = pre.right;
      }
      pre.right = root.right;
      root.right = root.left;
      root.left = null;
    }
    root = root.right;
  }
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//   TreeNode {
//     val,
//     left: None,
//     right: None
//   }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
  #[allow(dead_code)]
  pub fn flatten(root: &mut Option<Rc<RefCell<TreeNode>>>) {
    if root.is_none() {
      return;
    }
    let mut v: Vec<Option<Rc<RefCell<TreeNode>>>> = Vec::new();
    // Initialize the vector
    Self::pre_order_traverse(&mut v, root);
    // Traverse the vector
    let n = v.len();
    for i in 0..n - 1 {
      v[i].as_ref().unwrap().borrow_mut().left = None;
      v[i].as_ref().unwrap().borrow_mut().right = v[i + 1].clone();
    }
  }

  #[allow(dead_code)]
  fn pre_order_traverse(
    v: &mut Vec<Option<Rc<RefCell<TreeNode>>>>,
    root: &Option<Rc<RefCell<TreeNode>>>
  ) {
    if root.is_none() {
      return;
    }
    v.push(root.clone());
    let left = root.as_ref().unwrap().borrow().left.clone();
    let right = root.as_ref().unwrap().borrow().right.clone();
    Self::pre_order_traverse(v, &left);
    Self::pre_order_traverse(v, &right);
  }
}
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *   this.val = (val===undefined ? 0 : val)
 *   this.left = (left===undefined ? null : left)
 *   this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {void} Do not return anything, modify root in-place instead.
 */
var flatten = function (root) {
  while (root) {
    if (root.left) {
      let pre = root.left;
      while (pre.right) {
        pre = pre.right;
      }
      pre.right = root.right;
      root.right = root.left;
      root.left = null;
    }
    root = root.right;
  }
};

Solution 2

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func flatten(root *TreeNode) {
  for root != nil {
    left, right := root.Left, root.Right
    root.Left = nil
    if left != nil {
      root.Right = left
      for left.Right != nil {
        left = left.Right
      }
      left.Right = right
    }
    root = root.Right
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文