第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
5.12 分型假说, Hurst 指数
写在前面
9月的时候说想把arch包加进去,昨儿发现优矿已经加好了,由于优矿暂时没有开放历史高频接口,我索性就分享一个冷冷的小知识:分形市场假说(FMH),分析中玩的是低频数据(日线,或者分钟线)。
所谓分形市场假说,就是人们发现有效市场假说的种种不合理后,提出的一种假说,我曾经有仔细关注过这一块,因为这个假说真是太「中国特色」了:
它有几个主要论点:
- 当市场是由各种投资期限的投资者组成时,市场是稳定的(长期投资者和短期投资者),当投资者单一时,则市场会出流动性问题;
- 信息集对基本分析和技术分析来讲短期影响比长期影响要大;
- 当某一事件的出现使得基础分析的有效性值得怀疑时,长期投资者或者停止入市操作或者基于短期信息进行买卖;
- 价格是短期技术分析和长期基础分析的综合反应;
- 如果某种证券与经济周期无关,那么它本身就不存在长期趋势。此时,交易行为、市场流动性和短期信息将占主导地位。
总之就是一个具有「正反馈、非线性、分形、混沌、耗散」等等很牛逼的概念,深深吸引着曾经学过物理学的我。。。
关于Hurst指数以及MF-DFA
- 现在对于分形市场假说的主要方法论就是 Hurst指数,通过MF-DFA(Multifractal detrended fluctuation analysis)来计算, 具体的可以维基百科一下,大体就是当hurst>0.5时时间序列是一个persistent的过程,当hurst>0.5时时间序列是一个anti-persistent的过程,当hurst=0.5时间序列是一个不存在记忆的随机游走过程。
- 而在实际计算中,不会以理论值0.5作为标准(一般会略大于0.5)
写在最后
- 这份工作来自于LADISLAV KRISTOUFEK这位教授在12年的工作,论文名叫做RACTAL MARKETS HYPOTHESIS AND THE GLOBAL FINANCIAL CRISIS: SCALING, INVESTMENT HORIZONS AND LIQUIDITY
- 这位教授后来在13年把这项工作强化了一下(加了点小波的方法),把论文的图画得美美哒,竟然发表在了Nature的子刊Scientific Report上。当年我的导师发了一篇SR可是全校通报表扬啊,虽然现在我以前在物理系的导师说今年有4篇SR发表。。
- 总之,如果谁对这个感兴趣,或者想在Nature上水一篇文章,可以研究研究。
- 这个方法对设计策略有没有什么用? 好像没有用哎,所以我发表在「研究」板块里了哈。不过10年海通有研究员测试过根据这个方法写的策略,据说alpha还不错。
- 算法部分我用的是自己的library库。
import numpy as np
import pandas as pd
from arch import arch_model # GARCH(1,1)
from matplotlib import pyplot as plt
from datetime import timedelta
from CAL.PyCAL import *
from lib.Hurst import *
inter = 320 #滑动时间窗口
#设置时间
today = Date.todaysDate()
beginDate = '20100101'
endDate = today.toDateTime().strftime('%Y%m%d')
#设置指数类型
indexLabel = '000001' # SSE index
#indexLabel = '399006' # CYB index
#读取指数
indexPrice = DataAPI.MktIdxdGet(ticker=indexLabel,beginDate=beginDate,endDate=endDate,field=["tradeDate","closeIndex"],pandas="1")
price = np.array(indexPrice.loc[:,'closeIndex'])
#计算对数收益
back_price = np.append(price[0],price.copy())
back_price = back_price[:-1]
return_price = np.log(price) - np.log(back_price)
#计算波动率 from GARCH(1,1)
am = arch_model(return_price)
res = am.fit()
sqt_h = res.conditional_volatility
#去除波动性
f = return_price/sqt_h
#计算hurst指数,函数来自自定义library
hurst = Hurst(f,T=inter,step=1,q=2,Smin=10,Smax=50,Sintr=1)
indexPrice['Hurst'] = pd.DataFrame(np.array([0] * len(indexPrice)))
indexPrice.loc[inter-1:,'Hurst'] = hurst
indexPrice.index = indexPrice['tradeDate']
Iteration: 1, Func. Count: 6, Neg. LLF: -4149.56463466
Optimization terminated successfully. (Exit mode 0)
Current function value: -4151.74496903
Iterations: 1
Function evaluations: 17
Gradient evaluations: 1
plt.figure(figsize=(10,6))
plt.subplot(3,1,1)
plt.plot(f)
plt.subplot(3,1,2)
plt.plot(return_price)
plt.subplot(3,1,3)
plt.plot(sqt_h)
[<matplotlib.lines.Line2D at 0x95065d0>]
上面的图能够看到garch(1,1)
到底做了什么,它主要是对波动率进行了建模,在做分析时消去了这部分的影响。
plt.figure(1)
indexPrice['closeIndex'].tail(len(indexPrice)-inter).plot(figsize=(10,4),color='red',title='SSE Index',linewidth=1)
plt.figure(2)
indexPrice['Hurst'].tail(len(indexPrice)-inter).plot(figsize=(10,4),color='green',title='Hurst Index',linewidth=1,marker='.')
<matplotlib.axes.AxesSubplot at 0x95ae390>
- 看出了啥没?简单点说,就是hurst越大,越有可能延续之前的趋势(即动量),若hurst越小,则越有可能违反之前的趋势(即反转)。LADISLAV KRISTOUFEK这位教授的想法是通过极大极小值来判断,当然它分析的是美股啦。
- 再看看上面的图,是对上证指数的分析,取的是日线的数据(其实我喜欢用分钟线,因为A股波动辣么牛逼,日线颗粒度哪里够啊。。),可以得(meng)出这些结论:
- 13年中旬hurst出现最小值,说明熊市的跌势要反转了,马上要进入牛市了?!
- 15年中旬hurst出现最小值,说明牛市的涨势要反转了,马上要进入熊市了?!
- 算卦完毕。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论