返回介绍

solution / 2900-2999 / 2952.Minimum Number of Coins to be Added / README

发布于 2024-06-17 01:02:58 字数 4194 浏览 0 评论 0 收藏 0

2952. 需要添加的硬币的最小数量

English Version

题目描述

给你一个下标从 0 开始的整数数组 coins,表示可用的硬币的面值,以及一个整数 target

如果存在某个 coins 的子序列总和为 x,那么整数 x 就是一个 可取得的金额

返回需要添加到数组中的 任意面值 硬币的 最小数量 ,使范围 [1, target] 内的每个整数都属于 可取得的金额

数组的 子序列 是通过删除原始数组的一些(可能不删除)元素而形成的新的 非空 数组,删除过程不会改变剩余元素的相对位置。

 

示例 1:

输入:coins = [1,4,10], target = 19
输出:2
解释:需要添加面值为 2 和 8 的硬币各一枚,得到硬币数组 [1,2,4,8,10] 。
可以证明从 1 到 19 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 2 。

示例 2:

输入:coins = [1,4,10,5,7,19], target = 19
输出:1
解释:只需要添加一枚面值为 2 的硬币,得到硬币数组 [1,2,4,5,7,10,19] 。
可以证明从 1 到 19 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 1 。

示例 3:

输入:coins = [1,1,1], target = 20
输出:3
解释:
需要添加面值为 4 、8 和 16 的硬币各一枚,得到硬币数组 [1,1,1,4,8,16] 。 
可以证明从 1 到 20 的所有整数都可由数组中的硬币组合得到,且需要添加到数组中的硬币数目最小为 3 。

 

提示:

  • 1 <= target <= 105
  • 1 <= coins.length <= 105
  • 1 <= coins[i] <= target

解法

方法一:贪心 + 构造

我们不妨假设当前需要构造的金额为 $s$,且我们已经构造出了 $[0,…,s-1]$ 内的所有金额。如果此时有一个新的硬币 $x$,我们把它加入到数组中,可以构造出 $[x, s+x-1]$ 内的所有金额。

接下来,分类讨论:

  • 如果 $x \le s$,那么我们可以将上面两个区间合并,得到 $[0, s+x-1]$ 内的所有金额。
  • 如果 $x \gt s$,那么我们就需要添加一个面值为 $s$ 的硬币,这样可以构造出 $[0, 2s-1]$ 内的所有金额。然后我们再考虑 $x$ 和 $s$ 的大小关系,继续分析。

因此,我们将数组 $coins$ 按照升序排序,然后从小到大遍历数组中的硬币。对于每个硬币 $x$,我们进行上述分类讨论,直到 $s > target$ 为止。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 是数组的长度。

class Solution:
  def minimumAddedCoins(self, coins: List[int], target: int) -> int:
    coins.sort()
    s = 1
    ans = i = 0
    while s <= target:
      if i < len(coins) and coins[i] <= s:
        s += coins[i]
        i += 1
      else:
        s <<= 1
        ans += 1
    return ans
class Solution {
  public int minimumAddedCoins(int[] coins, int target) {
    Arrays.sort(coins);
    int ans = 0;
    for (int i = 0, s = 1; s <= target;) {
      if (i < coins.length && coins[i] <= s) {
        s += coins[i++];
      } else {
        s <<= 1;
        ++ans;
      }
    }
    return ans;
  }
}
class Solution {
public:
  int minimumAddedCoins(vector<int>& coins, int target) {
    sort(coins.begin(), coins.end());
    int ans = 0;
    for (int i = 0, s = 1; s <= target;) {
      if (i < coins.size() && coins[i] <= s) {
        s += coins[i++];
      } else {
        s <<= 1;
        ++ans;
      }
    }
    return ans;
  }
};
func minimumAddedCoins(coins []int, target int) (ans int) {
  slices.Sort(coins)
  for i, s := 0, 1; s <= target; {
    if i < len(coins) && coins[i] <= s {
      s += coins[i]
      i++
    } else {
      s <<= 1
      ans++
    }
  }
  return
}
function minimumAddedCoins(coins: number[], target: number): number {
  coins.sort((a, b) => a - b);
  let ans = 0;
  for (let i = 0, s = 1; s <= target; ) {
    if (i < coins.length && coins[i] <= s) {
      s += coins[i++];
    } else {
      s <<= 1;
      ++ans;
    }
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文