返回介绍

solution / 1700-1799 / 1792.Maximum Average Pass Ratio / README_EN

发布于 2024-06-17 01:03:14 字数 6670 浏览 0 评论 0 收藏 0

1792. Maximum Average Pass Ratio

中文文档

Description

There is a school that has classes of students and each class will be having a final exam. You are given a 2D integer array classes, where classes[i] = [passi, totali]. You know beforehand that in the ith class, there are totali total students, but only passi number of students will pass the exam.

You are also given an integer extraStudents. There are another extraStudents brilliant students that are guaranteed to pass the exam of any class they are assigned to. You want to assign each of the extraStudents students to a class in a way that maximizes the average pass ratio across all the classes.

The pass ratio of a class is equal to the number of students of the class that will pass the exam divided by the total number of students of the class. The average pass ratio is the sum of pass ratios of all the classes divided by the number of the classes.

Return _the maximum possible average pass ratio after assigning the _extraStudents_ students. _Answers within 10-5 of the actual answer will be accepted.

 

Example 1:

Input: classes = [[1,2],[3,5],[2,2]], extraStudents = 2
Output: 0.78333
Explanation: You can assign the two extra students to the first class. The average pass ratio will be equal to (3/4 + 3/5 + 2/2) / 3 = 0.78333.

Example 2:

Input: classes = [[2,4],[3,9],[4,5],[2,10]], extraStudents = 4
Output: 0.53485

 

Constraints:

  • 1 <= classes.length <= 105
  • classes[i].length == 2
  • 1 <= passi <= totali <= 105
  • 1 <= extraStudents <= 105

Solutions

Solution 1: Priority Queue (Max-Heap of Increment)

Suppose a class currently has a pass rate of $\frac{a}{b}$. If we arrange a smart student into this class, then the pass rate of the class will become $\frac{a+1}{b+1}$. We can find that the increment of the pass rate is $\frac{a+1}{b+1} - \frac{a}{b}$.

We maintain a max-heap, which stores the increment of the pass rate for each class.

Perform extraStudents operations, each time taking a class from the top of the heap, adding $1$ to both the number of students and the number of passes in this class, then recalculating the increment of the pass rate of this class and putting it back into the heap. Repeat this process until all students are allocated.

Finally, we sum up the pass rates of all classes, and then divide by the number of classes to get the answer.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the number of classes.

class Solution:
  def maxAverageRatio(self, classes: List[List[int]], extraStudents: int) -> float:
    h = [(a / b - (a + 1) / (b + 1), a, b) for a, b in classes]
    heapify(h)
    for _ in range(extraStudents):
      _, a, b = heappop(h)
      a, b = a + 1, b + 1
      heappush(h, (a / b - (a + 1) / (b + 1), a, b))
    return sum(v[1] / v[2] for v in h) / len(classes)
class Solution {
  public double maxAverageRatio(int[][] classes, int extraStudents) {
    PriorityQueue<double[]> pq = new PriorityQueue<>((a, b) -> {
      double x = (a[0] + 1) / (a[1] + 1) - a[0] / a[1];
      double y = (b[0] + 1) / (b[1] + 1) - b[0] / b[1];
      return Double.compare(y, x);
    });
    for (var e : classes) {
      pq.offer(new double[] {e[0], e[1]});
    }
    while (extraStudents-- > 0) {
      var e = pq.poll();
      double a = e[0] + 1, b = e[1] + 1;
      pq.offer(new double[] {a, b});
    }
    double ans = 0;
    while (!pq.isEmpty()) {
      var e = pq.poll();
      ans += e[0] / e[1];
    }
    return ans / classes.length;
  }
}
class Solution {
public:
  double maxAverageRatio(vector<vector<int>>& classes, int extraStudents) {
    priority_queue<tuple<double, int, int>> pq;
    for (auto& e : classes) {
      int a = e[0], b = e[1];
      double x = (double) (a + 1) / (b + 1) - (double) a / b;
      pq.push({x, a, b});
    }
    while (extraStudents--) {
      auto [_, a, b] = pq.top();
      pq.pop();
      a++;
      b++;
      double x = (double) (a + 1) / (b + 1) - (double) a / b;
      pq.push({x, a, b});
    }
    double ans = 0;
    while (pq.size()) {
      auto [_, a, b] = pq.top();
      pq.pop();
      ans += (double) a / b;
    }
    return ans / classes.size();
  }
};
func maxAverageRatio(classes [][]int, extraStudents int) float64 {
  pq := hp{}
  for _, e := range classes {
    a, b := e[0], e[1]
    x := float64(a+1)/float64(b+1) - float64(a)/float64(b)
    heap.Push(&pq, tuple{x, a, b})
  }
  for i := 0; i < extraStudents; i++ {
    e := heap.Pop(&pq).(tuple)
    a, b := e.a+1, e.b+1
    x := float64(a+1)/float64(b+1) - float64(a)/float64(b)
    heap.Push(&pq, tuple{x, a, b})
  }
  var ans float64
  for len(pq) > 0 {
    e := heap.Pop(&pq).(tuple)
    ans += float64(e.a) / float64(e.b)
  }
  return ans / float64(len(classes))
}

type tuple struct {
  x float64
  a int
  b int
}

type hp []tuple

func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool {
  a, b := h[i], h[j]
  return a.x > b.x
}
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any)   { *h = append(*h, v.(tuple)) }
func (h *hp) Pop() any   { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文