返回介绍

solution / 0900-0999 / 0909.Snakes and Ladders / README_EN

发布于 2024-06-17 01:03:33 字数 7349 浏览 0 评论 0 收藏 0

909. Snakes and Ladders

中文文档

Description

You are given an n x n integer matrix board where the cells are labeled from 1 to n2 in a Boustrophedon style starting from the bottom left of the board (i.e. board[n - 1][0]) and alternating direction each row.

You start on square 1 of the board. In each move, starting from square curr, do the following:

  • Choose a destination square next with a label in the range [curr + 1, min(curr + 6, n2)].
    • This choice simulates the result of a standard 6-sided die roll: i.e., there are always at most 6 destinations, regardless of the size of the board.
  • If next has a snake or ladder, you must move to the destination of that snake or ladder. Otherwise, you move to next.
  • The game ends when you reach the square n2.

A board square on row r and column c has a snake or ladder if board[r][c] != -1. The destination of that snake or ladder is board[r][c]. Squares 1 and n2 do not have a snake or ladder.

Note that you only take a snake or ladder at most once per move. If the destination to a snake or ladder is the start of another snake or ladder, you do not follow the subsequent snake or ladder.

  • For example, suppose the board is [[-1,4],[-1,3]], and on the first move, your destination square is 2. You follow the ladder to square 3, but do not follow the subsequent ladder to 4.

Return _the least number of moves required to reach the square _n2_. If it is not possible to reach the square, return _-1.

 

Example 1:

Input: board = [[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,35,-1,-1,13,-1],[-1,-1,-1,-1,-1,-1],[-1,15,-1,-1,-1,-1]]
Output: 4
Explanation: 
In the beginning, you start at square 1 (at row 5, column 0).
You decide to move to square 2 and must take the ladder to square 15.
You then decide to move to square 17 and must take the snake to square 13.
You then decide to move to square 14 and must take the ladder to square 35.
You then decide to move to square 36, ending the game.
This is the lowest possible number of moves to reach the last square, so return 4.

Example 2:

Input: board = [[-1,-1],[-1,3]]
Output: 1

 

Constraints:

  • n == board.length == board[i].length
  • 2 <= n <= 20
  • board[i][j] is either -1 or in the range [1, n2].
  • The squares labeled 1 and n2 do not have any ladders or snakes.

Solutions

Solution 1

class Solution:
  def snakesAndLadders(self, board: List[List[int]]) -> int:
    def get(x):
      i, j = (x - 1) // n, (x - 1) % n
      if i & 1:
        j = n - 1 - j
      return n - 1 - i, j

    n = len(board)
    q = deque([1])
    vis = {1}
    ans = 0
    while q:
      for _ in range(len(q)):
        curr = q.popleft()
        if curr == n * n:
          return ans
        for next in range(curr + 1, min(curr + 7, n * n + 1)):
          i, j = get(next)
          if board[i][j] != -1:
            next = board[i][j]
          if next not in vis:
            q.append(next)
            vis.add(next)
      ans += 1
    return -1
class Solution {
  private int n;

  public int snakesAndLadders(int[][] board) {
    n = board.length;
    Deque<Integer> q = new ArrayDeque<>();
    q.offer(1);
    boolean[] vis = new boolean[n * n + 1];
    vis[1] = true;
    int ans = 0;
    while (!q.isEmpty()) {
      for (int t = q.size(); t > 0; --t) {
        int curr = q.poll();
        if (curr == n * n) {
          return ans;
        }
        for (int k = curr + 1; k <= Math.min(curr + 6, n * n); ++k) {
          int[] p = get(k);
          int next = k;
          int i = p[0], j = p[1];
          if (board[i][j] != -1) {
            next = board[i][j];
          }
          if (!vis[next]) {
            vis[next] = true;
            q.offer(next);
          }
        }
      }
      ++ans;
    }
    return -1;
  }

  private int[] get(int x) {
    int i = (x - 1) / n, j = (x - 1) % n;
    if (i % 2 == 1) {
      j = n - 1 - j;
    }
    return new int[] {n - 1 - i, j};
  }
}
class Solution {
public:
  int n;

  int snakesAndLadders(vector<vector<int>>& board) {
    n = board.size();
    queue<int> q{{1}};
    vector<bool> vis(n * n + 1);
    vis[1] = true;
    int ans = 0;
    while (!q.empty()) {
      for (int t = q.size(); t; --t) {
        int curr = q.front();
        if (curr == n * n) return ans;
        q.pop();
        for (int k = curr + 1; k <= min(curr + 6, n * n); ++k) {
          auto p = get(k);
          int next = k;
          int i = p[0], j = p[1];
          if (board[i][j] != -1) next = board[i][j];
          if (!vis[next]) {
            vis[next] = true;
            q.push(next);
          }
        }
      }
      ++ans;
    }
    return -1;
  }

  vector<int> get(int x) {
    int i = (x - 1) / n, j = (x - 1) % n;
    if (i % 2 == 1) j = n - 1 - j;
    return {n - 1 - i, j};
  }
};
func snakesAndLadders(board [][]int) int {
  n := len(board)
  get := func(x int) []int {
    i, j := (x-1)/n, (x-1)%n
    if i%2 == 1 {
      j = n - 1 - j
    }
    return []int{n - 1 - i, j}
  }
  q := []int{1}
  vis := make([]bool, n*n+1)
  vis[1] = true
  ans := 0
  for len(q) > 0 {
    for t := len(q); t > 0; t-- {
      curr := q[0]
      if curr == n*n {
        return ans
      }
      q = q[1:]
      for k := curr + 1; k <= curr+6 && k <= n*n; k++ {
        p := get(k)
        next := k
        i, j := p[0], p[1]
        if board[i][j] != -1 {
          next = board[i][j]
        }
        if !vis[next] {
          vis[next] = true
          q = append(q, next)
        }
      }
    }
    ans++
  }
  return -1
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文