返回介绍

solution / 1200-1299 / 1202.Smallest String With Swaps / README_EN

发布于 2024-06-17 01:03:22 字数 8346 浏览 0 评论 0 收藏 0

1202. Smallest String With Swaps

中文文档

Description

You are given a string s, and an array of pairs of indices in the string pairs where pairs[i] = [a, b] indicates 2 indices(0-indexed) of the string.

You can swap the characters at any pair of indices in the given pairs any number of times.

Return the lexicographically smallest string that s can be changed to after using the swaps.

 

Example 1:

Input: s = "dcab", pairs = [[0,3],[1,2]]
Output: "bacd"
Explaination: 
Swap s[0] and s[3], s = "bcad"
Swap s[1] and s[2], s = "bacd"

Example 2:

Input: s = "dcab", pairs = [[0,3],[1,2],[0,2]]
Output: "abcd"
Explaination: 
Swap s[0] and s[3], s = "bcad"
Swap s[0] and s[2], s = "acbd"
Swap s[1] and s[2], s = "abcd"

Example 3:

Input: s = "cba", pairs = [[0,1],[1,2]]
Output: "abc"
Explaination: 
Swap s[0] and s[1], s = "bca"
Swap s[1] and s[2], s = "bac"
Swap s[0] and s[1], s = "abc"

 

Constraints:

  • 1 <= s.length <= 10^5
  • 0 <= pairs.length <= 10^5
  • 0 <= pairs[i][0], pairs[i][1] < s.length
  • s only contains lower case English letters.

Solutions

Solution 1: Union-Find

We notice that the index pairs have transitivity, i.e., if $a$ and $b$ can be swapped, and $b$ and $c$ can be swapped, then $a$ and $c$ can also be swapped. Therefore, we can consider using a union-find data structure to maintain the connectivity of these index pairs, and sort the characters belonging to the same connected component in lexicographical order.

Finally, we traverse the string. For the character at the current position, we replace it with the smallest character in the connected component, then remove this character from the connected component, and continue to traverse the string.

The time complexity is $O(n \times \log n + m \times \alpha(m))$, and the space complexity is $O(n)$. Here, $n$ and $m$ are the length of the string and the number of index pairs, respectively, and $\alpha$ is the inverse Ackermann function.

class Solution:
  def smallestStringWithSwaps(self, s: str, pairs: List[List[int]]) -> str:
    def find(x: int) -> int:
      if p[x] != x:
        p[x] = find(p[x])
      return p[x]

    n = len(s)
    p = list(range(n))
    for a, b in pairs:
      p[find(a)] = find(b)
    d = defaultdict(list)
    for i, c in enumerate(s):
      d[find(i)].append(c)
    for i in d.keys():
      d[i].sort(reverse=True)
    return "".join(d[find(i)].pop() for i in range(n))
class Solution {
  private int[] p;

  public String smallestStringWithSwaps(String s, List<List<Integer>> pairs) {
    int n = s.length();
    p = new int[n];
    List<Character>[] d = new List[n];
    for (int i = 0; i < n; ++i) {
      p[i] = i;
      d[i] = new ArrayList<>();
    }
    for (var pair : pairs) {
      int a = pair.get(0), b = pair.get(1);
      p[find(a)] = find(b);
    }
    char[] cs = s.toCharArray();
    for (int i = 0; i < n; ++i) {
      d[find(i)].add(cs[i]);
    }
    for (var e : d) {
      e.sort((a, b) -> b - a);
    }
    for (int i = 0; i < n; ++i) {
      var e = d[find(i)];
      cs[i] = e.remove(e.size() - 1);
    }
    return String.valueOf(cs);
  }

  private int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }
}
class Solution {
public:
  string smallestStringWithSwaps(string s, vector<vector<int>>& pairs) {
    int n = s.size();
    int p[n];
    iota(p, p + n, 0);
    vector<char> d[n];
    function<int(int)> find = [&](int x) -> int {
      if (p[x] != x) {
        p[x] = find(p[x]);
      }
      return p[x];
    };
    for (auto e : pairs) {
      int a = e[0], b = e[1];
      p[find(a)] = find(b);
    }
    for (int i = 0; i < n; ++i) {
      d[find(i)].push_back(s[i]);
    }
    for (auto& e : d) {
      sort(e.rbegin(), e.rend());
    }
    for (int i = 0; i < n; ++i) {
      auto& e = d[find(i)];
      s[i] = e.back();
      e.pop_back();
    }
    return s;
  }
};
func smallestStringWithSwaps(s string, pairs [][]int) string {
  n := len(s)
  p := make([]int, n)
  d := make([][]byte, n)
  for i := range p {
    p[i] = i
  }
  var find func(int) int
  find = func(x int) int {
    if p[x] != x {
      p[x] = find(p[x])
    }
    return p[x]
  }
  for _, pair := range pairs {
    a, b := pair[0], pair[1]
    p[find(a)] = find(b)
  }
  cs := []byte(s)
  for i, c := range cs {
    j := find(i)
    d[j] = append(d[j], c)
  }
  for i := range d {
    sort.Slice(d[i], func(a, b int) bool { return d[i][a] > d[i][b] })
  }
  for i := range cs {
    j := find(i)
    cs[i] = d[j][len(d[j])-1]
    d[j] = d[j][:len(d[j])-1]
  }
  return string(cs)
}
function smallestStringWithSwaps(s: string, pairs: number[][]): string {
  const n = s.length;
  const p = new Array(n).fill(0).map((_, i) => i);
  const find = (x: number): number => {
    if (p[x] !== x) {
      p[x] = find(p[x]);
    }
    return p[x];
  };
  const d: string[][] = new Array(n).fill(0).map(() => []);
  for (const [a, b] of pairs) {
    p[find(a)] = find(b);
  }
  for (let i = 0; i < n; ++i) {
    d[find(i)].push(s[i]);
  }
  for (const e of d) {
    e.sort((a, b) => b.charCodeAt(0) - a.charCodeAt(0));
  }
  const ans: string[] = [];
  for (let i = 0; i < n; ++i) {
    ans.push(d[find(i)].pop()!);
  }
  return ans.join('');
}
impl Solution {
  #[allow(dead_code)]
  pub fn smallest_string_with_swaps(s: String, pairs: Vec<Vec<i32>>) -> String {
    let n = s.as_bytes().len();
    let s = s.as_bytes();
    let mut disjoint_set: Vec<usize> = vec![0; n];
    let mut str_vec: Vec<Vec<u8>> = vec![Vec::new(); n];
    let mut ret_str = String::new();

    // Initialize the disjoint set
    for i in 0..n {
      disjoint_set[i] = i;
    }

    // Union the pairs
    for pair in pairs {
      Self::union(pair[0] as usize, pair[1] as usize, &mut disjoint_set);
    }

    // Initialize the return vector
    for (i, c) in s.iter().enumerate() {
      let p_c = Self::find(i, &mut disjoint_set);
      str_vec[p_c].push(*c);
    }

    // Sort the return vector in reverse order
    for cur_vec in &mut str_vec {
      cur_vec.sort();
      cur_vec.reverse();
    }

    // Construct the return string
    for i in 0..n {
      let index = Self::find(i, &mut disjoint_set);
      ret_str.push(str_vec[index].last().unwrap().clone() as char);
      str_vec[index].pop();
    }

    ret_str
  }

  #[allow(dead_code)]
  fn find(x: usize, d_set: &mut Vec<usize>) -> usize {
    if d_set[x] != x {
      d_set[x] = Self::find(d_set[x], d_set);
    }
    d_set[x]
  }

  #[allow(dead_code)]
  fn union(x: usize, y: usize, d_set: &mut Vec<usize>) {
    let p_x = Self::find(x, d_set);
    let p_y = Self::find(y, d_set);
    d_set[p_x] = p_y;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文