- 第一章 SystemVerilog导论
- 第二章 文本值
- 第三章 数据类型
- 第四章 数组
- 第五章 数据声明
- 第六章 属性
- 第七章 操作符与表达式
- 第八章 过程语句和控制流
- 第九章 进程
- 第十章 任务与函数
- 第十一章 类
- 第十二章 随机约束
- 第十三章 进程间的同步与通信
- 第十四章 调度语义
- 第十五章 时钟控制块
- 第十六章 程序块
- 第十七章 断言
- 第十八章 层次
- 第十九章 接口
- 第二十章 覆盖
- 第二十一章 参数
- 第二十二章 配置库
- 第二十三章 系统任务与系统函数
- 23.1 简介(一般信息)
- 23.2 确立时的typeof函数
- 23.3 typename函数
- 23.4 表达式尺寸系统函数
- 23.5 范围系统函数
- 23.6 Shortreal转换
- 23.7 数组查询系统函数
- 23.8 断言严重性系统任务
- 23.9 断言控制系统任务
- 23.10 断言系统函数
- 23.11 随机数系统函数
- 23.12 程序控制
- 23.13 覆盖系统函数
- 23.14 对Verilog-2001系统任务的增强
- 23.15 $readmemb与$readmemh
- 23.16 $writememb and $writememh
- 23.17 File format considerations for multi-dimensional unpacked arrays
- 23.18 System task arguments for multi-dimensional unpacked arrays
- 第二十四章 VCD数据
- 第二十五章 编译器指令
- 第二十六章 考虑从SystemVerilog中删除的功能
- 第二十七章 直接编程接口(DPI)
- 27.1 概述
- 27.2 Two layers of the DPI
- 27.3 Global name space of imported and exported functions
- 27.4 导入的任务和函数
- 27.5 Calling imported functions
- 27.6 Exported functions
- 27.7 Exported tasks
- 27.8 Disabling DPI tasks and functions
- 第二十八章 SystemVerilog断言API
- 第二十九章 SystemVerilog覆盖API
- 29.1 需求
- 29.2 SystemVerilog real-time coverage access
- 29.3 FSM recognition
- 29.3.1 Specifying the signal that holds the current state
- 29.3.2 Specifying the part-select that holds the current state
- 29.3.3 Specifying the concatenation that holds the current state
- 29.3.4 Specifying the signal that holds the next state
- 29.3.5 Specifying the current and next state signals in the same declaration
- 29.3.6 Specifying the possible states of the FSM
- 29.3.7 Pragmas in one-line comments
- 29.3.8 Example
- 29.4 VPI coverage extensions
- 第三十章 SystemVerilog数据读API
- 30.1 简介(一般信息)
- 30.2 需求
- 30.3 Extensions to VPI enumerations
- 30.4 VPI object type additions
- 30.5 Object model diagrams
- 30.6 Usage extensions to VPI routines
- 30.7 VPI routines added in SystemVerilog
- 30.8 Reading data
- 30.9 Optionally unloading the data
- 30.10 Reading data from multiple databases and/or different read library providers
- 30.11 VPI routines extended in SystemVerilog
- 30.12 VPI routines added in SystemVerilog
- 30.12.1 VPI reader routines
- 第三十一章 SystemVerilog VPI Object Model
- 31.1 简介(一般信息)
- 31.2 Instance
- 31.3 Interface
- 31.4 Program
- 31.5 Module (supersedes IEEE 1364-2001 26.6.1)
- 31.6 Modport
- 31.7 Interface tf decl
- 31.8 Ports (supersedes IEEE 1364-2001 26.6.5)
- 31.9 Ref Obj
- 31.9.1 Examples
- 31.10 Variables (supersedes IEEE 1364-2001 section 26.6.8)
- 31.11 Var Select (supersedes IEEE 1364-2001 26.6.8)
- 31.12 Typespec
- 31.13 Variable Drivers and Loads (supersedes IEEE 1364-2001 26.6.23)
- 31.14 Instance Arrays (supersedes IEEE 1364-2001 26.6.2)
- 31.15 Scope (supersedes IEEE 1364-2001 26.6.3)
- 31.16 IO Declaration (supersedes IEEE 1364-2001 26.6.4)
- 31.17 Clocking Block
- 31.18 Class Object Definition
- 31.19 Constraint, constraint ordering, distribution,
- 31.20 Constraint expression
- 31.21 Class Variables
- 31.22 Structure/Union
- 31.23 Named Events (supersedes IEEE 1364-2001 26.6.11)
- 31.24 Task, Function Declaration (supersedes IEEE 1364-2001 26.6.18)
- 31.25 Alias Statement
- 31.25.1 Examples
- 31.26 Frames (supersedes IEEE 1364-2001 26.6.20)
- 31.27 Threads
- 31.28 tf call (supersedes IEEE 1364-2001 26.6.19)
- 31.29 Module path, path term (supersedes IEEE 1364-2001 26.6.15)
- 31.30 Concurrent assertions
- 31.31 Property Decl
- 31.32 Property Specification
- 31.33 Multiclock Sequence Expression
- 31.34 Sequence Declaration
- 31.35 Sequence Expression
- 31.36 Attribute (supersedes IEEE 1364-2001 26.6.42)
- 31.37 Atomic Statement (supersedes IEEE 1364-2001 26.6.27)
- 31.38 If, if else, return, case, do while (supersedes IEEE 1364-2001 26.6.35, 26.6.36)
- 31.39 waits, disables, expect, foreach (supersedes IEEE 1364 26.6.38)
- 31.40 Simple expressions (supersedes IEEE 1364-2001 26.6.25)
- 31.41 Expressions (supersedes IEEE 1364-2001 26.6.26)
- 31.42 Event control (supersedes IEEE 1364-2001 26.6.30)
- 31.43 Event stmt (supersedes IEEE 1364-2001 26.6.27)
- 31.44 Process (supersedes IEEE 1364-2001 26.6.27)
- 31.45 Assignment (supersedes IEEE 1364-2001 26.6.28)
- 附录A 形式语法
- A.1 源文本
- A.2 声明
- A.3 Primitive instances
- A.4 Module, interface and generated instantiation
- A.5 UDP declaration and instantiation
- A.6 Behavioral statements
- A.6.1 Continuous assignment and net alias statements
- A.6.2 Procedural blocks and assignments
- A.6.3 Parallel and sequential blocks
- A.6.4 Statements
- A.6.5 Timing control statements
- A.6.6 Conditional statements
- A.6.7 Case statements
- A.6.8 Looping statements
- A.6.9 Subroutine call statements
- A.6.10 Assertion statements
- A.6.11 Clocking block
- A.6.12 Randsequence
- A.7 Specify section
- A.8 Expressions
- A.9 General
- A.10 Footnotes (normative)
- 附录B 关键字
- 附录C 标准包
- 附录D 链表
- 附录E DPI C-layer
- E.1 概述
- E.2 Naming conventions
- E.3 Portability
- E.4 Include files
- E.5 Semantic constraints
- E.6 Data types
- E.7 Argument passing modes
- E.8 Context tasks and functions
- E.9 Include files
- E.10 Arrays
- E.11 Open arrays
- E.11.1 Actual ranges
- E.11.2 Array querying functions
- E.11.3 Access functions
- E.11.4 Access to the actual representation
- E.11.5 Access to elements via canonical representation
- E.11.6 Access to scalar elements (bit and logic)
- E.11.7 Access to array elements of other types
- E.11.8 Example 4— two-dimensional open array
- E.11.9 Example 5 — open array
- E.11.10 Example 6 — access to packed arrays
- E.11.11 Example 7 — binary compatible calls of exported functions
- 附录F 包含文件
- 附录G 包含外部语言代码
- 附录H 并发断言的形式语义
- 附录I svvpiuser.h
- 附录J 术语表
- 附录K 参考书目
- 其他
21.2 参数声明语法
local_parameter_declaration ::= // 引用自附录A.2.1.1 localparam data_type_or_implicit list_of_param_assignments; parameter_declaration ::= parameter data_type_or_implicit list_of_param_assignments | parameter type list_of_type_assignments specparam_declaration ::= specparam [packed_dimension] list_of_specparam_assignments; data_type_or_implicit ::= // 引用自附录A.2.2.1 data_type | [signing] {packed_dimension} list_of_param_assignments ::= param_assignment {, param_assignment} // 引用自附录A.2.3 list_of_specparam_assignments ::= specparam_assignment {, specparam_assignment} list_of_type_assignments ::= type_assignment {, type_assignment} param_assignment ::= // 引用自附录A.2.4 parameter_identifier {unpacked_dimension} = constant_param_expression specparam_assignment ::= specparam_identifier = constant_mintypmax_expression | pulse_control_specparam type_assignment ::= type_identifier = data_type parameter_port_list ::= // 引用自附录A.1.4 #(list_of_param_assignments {, parameter_port_declaration}) | #(parameter_port_declaration {, parameter_port_declaration}) parameter_port_declaration ::= parameter_declaration | data_type list_of_param_assignments | type list_of_type_assignments
语法 21-1 — 参数声明语法(摘录自附录A)
A module, interface, program or class can have parameters, which are set during elaboration and are constant during simulation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied, parameters default to type logic of arbitrary size for Verilog-2001 compatibility and interoperability. SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to have data whose type is set for each instance.
module ma #(parameter p1 = 1, parameter type p2 = shortint) (input logic [p1:0] i, output logic [p1:0] o); p2 j = 0; // type of j is set by a parameter, (shortint unless redefined) always @(i) begin o = i; j++; end endmodule module mb; logic [3:0] i,o; ma #(.p1(3), .p2(int)) u1(i,o); //redefines p2 to a type of int endmodule
SystemVerilog adds the ability for local parameters to be declared in a generate block. Local parameters can also be declared in a package or in a compilation unit scope. In these contexts, the parameter keyword can be used as a synonym for the localparam keyword.
$ can be assigned to parameters of integer types. A parameter to which $ is assigned shall only be used wherever $ can be specified as a literal constant.
For example, $ represents unbounded range specification, where the upper index can be any integer.
parameter r2 = $; property inq1(r1,r2); @(posedge clk) a ##[r1:r2] b ##1 c |=> d; endproperty assert inq1(3);
To support whether a constant is $, a system function is provided to test whether a constant is a $. The syntax of the system function is
$isunbounded(const_expression);
$isunbounded returns true if const_expression is unbounded. Typically, $isunbounded would be used as a condition in the generate statement.
The example below illustrates the benefit of using $ in writing properties concisely where the range is parameterized. The checker in the example ensures that a bus driven by signal en remains 0, i.e, quiet for the specified minimum (min_quiet) and maximum (max_quiet) quiet time.
Note that function $isunbounded is used for checking the validity of the actual arguments.
interface quiet_time_checker #(parameter min_quiet = 0, parameter max_quiet = 0) (input logic clk, reset_n, [1:0]en); generate if ( max_quiet == 0) begin property quiet_time; @(posedge clk) reset_n |-> ($countones(en) == 1); endproperty a1: assert property (quiet_time); end else begin property quiet_time; @(posedge clk) (reset_n && ($past(en) != 0) && en == 0) |->(en == 0)[*min_quiet:max_quiet] ##1 ($countones(en) == 1); endproperty a1: assert property (quiet_time); end if ((min_quiet == 0) && ($isunbounded(max_quiet)) $display(warning_msg); endgenerate endinterface quiet_time_checker #(0, 0) quiet_never (clk,1,enables); quiet_time_checker #(2, 4) quiet_in_window (clk,1,enables); quiet_time_checker #(0, $) quiet_any (clk,1,enables);
Another example below illustrates that by testing for $, a property can be configured according to the requirements. When parameter max_cks is unbounded, it is not required to test for expr to become false.
interface width_checker #(parameter min_cks = 1, parameter max_cks = 1) (input logic clk, reset_n, expr); generate begin if ($isunbounded(max_cks)) begin property width; @(posedge clk) (reset_n && $rose(expr)) |-> (expr [* min_cks]); endproperty a2: assert property (width); end else begin property assert_width_p; @(posedge clk) (reset_n && $rose(expr)) |-> (expr[* min_cks:max_cks]) ##1 (!expr); endproperty a2: assert property (width); end endgenerate endinterface width_checker #(3, $) max_width_unspecified (clk,1,enables); width_checker #(2, 4) width_specified (clk,1,enables);
SystemVerilog also adds the ability to omit the parameter keyword in a parameter port list.
class vector #(size = 1); logic [size-1:0] v; endclass typedef vector#(16) word; interface simple_bus #(AWIDTH = 64, type T = word) (input bit clk) ; endinterface
In a list of parameters, a parameter can depend on earlier parameters. In the following declaration, the default value of the second parameter depends on the value of the first parameter. The third parameter is a type, and the fourth parameter is a value of that type.
module mc #(int N = 5, M = N*16, type T = int, T x = 0) ( ... ); ... endmodule
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论