返回介绍

solution / 1200-1299 / 1201.Ugly Number III / README_EN

发布于 2024-06-17 01:03:22 字数 7156 浏览 0 评论 0 收藏 0

1201. Ugly Number III

中文文档

Description

An ugly number is a positive integer that is divisible by a, b, or c.

Given four integers n, a, b, and c, return the nth ugly number.

 

Example 1:

Input: n = 3, a = 2, b = 3, c = 5
Output: 4
Explanation: The ugly numbers are 2, 3, 4, 5, 6, 8, 9, 10... The 3rd is 4.

Example 2:

Input: n = 4, a = 2, b = 3, c = 4
Output: 6
Explanation: The ugly numbers are 2, 3, 4, 6, 8, 9, 10, 12... The 4th is 6.

Example 3:

Input: n = 5, a = 2, b = 11, c = 13
Output: 10
Explanation: The ugly numbers are 2, 4, 6, 8, 10, 11, 12, 13... The 5th is 10.

 

Constraints:

  • 1 <= n, a, b, c <= 109
  • 1 <= a * b * c <= 1018
  • It is guaranteed that the result will be in range [1, 2 * 109].

Solutions

Solution 1: Binary Search + Inclusion-Exclusion Principle

We can transform the problem into: find the smallest positive integer $x$ such that the number of ugly numbers less than or equal to $x$ is exactly $n$.

For a positive integer $x$, there are $\left\lfloor \frac{x}{a} \right\rfloor$ numbers divisible by $a$, $\left\lfloor \frac{x}{b} \right\rfloor$ numbers divisible by $b$, $\left\lfloor \frac{x}{c} \right\rfloor$ numbers divisible by $c$, $\left\lfloor \frac{x}{lcm(a, b)} \right\rfloor$ numbers divisible by both $a$ and $b$, $\left\lfloor \frac{x}{lcm(a, c)} \right\rfloor$ numbers divisible by both $a$ and $c$, $\left\lfloor \frac{x}{lcm(b, c)} \right\rfloor$ numbers divisible by both $b$ and $c$, and $\left\lfloor \frac{x}{lcm(a, b, c)} \right\rfloor$ numbers divisible by $a$, $b$, and $c$ at the same time. According to the inclusion-exclusion principle, the number of ugly numbers less than or equal to $x$ is:

$$ \left\lfloor \frac{x}{a} \right\rfloor + \left\lfloor \frac{x}{b} \right\rfloor + \left\lfloor \frac{x}{c} \right\rfloor - \left\lfloor \frac{x}{lcm(a, b)} \right\rfloor - \left\lfloor \frac{x}{lcm(a, c)} \right\rfloor - \left\lfloor \frac{x}{lcm(b, c)} \right\rfloor + \left\lfloor \frac{x}{lcm(a, b, c)} \right\rfloor $$

We can use binary search to find the smallest positive integer $x$ such that the number of ugly numbers less than or equal to $x$ is exactly $n$.

Define the left boundary of binary search as $l=1$ and the right boundary as $r=2 \times 10^9$, where $2 \times 10^9$ is the maximum value given by the problem. In each step of binary search, we find the middle number $mid$. If the number of ugly numbers less than or equal to $mid$ is greater than or equal to $n$, it means that the smallest positive integer $x$ falls in the interval $[l,mid]$, otherwise it falls in the interval $[mid+1,r]$. During the binary search process, we need to continuously update the number of ugly numbers less than or equal to $mid$ until we find the smallest positive integer $x$.

The time complexity is $O(\log m)$, where $m = 2 \times 10^9$. The space complexity is $O(1)$.

class Solution:
  def nthUglyNumber(self, n: int, a: int, b: int, c: int) -> int:
    ab = lcm(a, b)
    bc = lcm(b, c)
    ac = lcm(a, c)
    abc = lcm(a, b, c)
    l, r = 1, 2 * 10**9
    while l < r:
      mid = (l + r) >> 1
      if (
        mid // a
        + mid // b
        + mid // c
        - mid // ab
        - mid // bc
        - mid // ac
        + mid // abc
        >= n
      ):
        r = mid
      else:
        l = mid + 1
    return l
class Solution {
  public int nthUglyNumber(int n, int a, int b, int c) {
    long ab = lcm(a, b);
    long bc = lcm(b, c);
    long ac = lcm(a, c);
    long abc = lcm(ab, c);
    long l = 1, r = 2000000000;
    while (l < r) {
      long mid = (l + r) >> 1;
      if (mid / a + mid / b + mid / c - mid / ab - mid / bc - mid / ac + mid / abc >= n) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return (int) l;
  }

  private long gcd(long a, long b) {
    return b == 0 ? a : gcd(b, a % b);
  }

  private long lcm(long a, long b) {
    return a * b / gcd(a, b);
  }
}
class Solution {
public:
  int nthUglyNumber(int n, int a, int b, int c) {
    long long ab = lcm(a, b);
    long long bc = lcm(b, c);
    long long ac = lcm(a, c);
    long long abc = lcm(ab, c);
    long long l = 1, r = 2000000000;
    while (l < r) {
      long long mid = (l + r) >> 1;
      if (mid / a + mid / b + mid / c - mid / ab - mid / bc - mid / ac + mid / abc >= n) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  }

  long long lcm(long long a, long long b) {
    return a * b / gcd(a, b);
  }

  long long gcd(long long a, long long b) {
    return b == 0 ? a : gcd(b, a % b);
  }
};
func nthUglyNumber(n int, a int, b int, c int) int {
  ab, bc, ac := lcm(a, b), lcm(b, c), lcm(a, c)
  abc := lcm(ab, c)
  var l, r int = 1, 2e9
  for l < r {
    mid := (l + r) >> 1
    if mid/a+mid/b+mid/c-mid/ab-mid/bc-mid/ac+mid/abc >= n {
      r = mid
    } else {
      l = mid + 1
    }
  }
  return l
}

func gcd(a, b int) int {
  if b == 0 {
    return a
  }
  return gcd(b, a%b)
}

func lcm(a, b int) int {
  return a * b / gcd(a, b)
}
function nthUglyNumber(n: number, a: number, b: number, c: number): number {
  const ab = lcm(BigInt(a), BigInt(b));
  const bc = lcm(BigInt(b), BigInt(c));
  const ac = lcm(BigInt(a), BigInt(c));
  const abc = lcm(BigInt(a), bc);
  let l = 1n;
  let r = BigInt(2e9);
  while (l < r) {
    const mid = (l + r) >> 1n;
    const count =
      mid / BigInt(a) +
      mid / BigInt(b) +
      mid / BigInt(c) -
      mid / ab -
      mid / bc -
      mid / ac +
      mid / abc;
    if (count >= BigInt(n)) {
      r = mid;
    } else {
      l = mid + 1n;
    }
  }
  return Number(l);
}

function gcd(a: bigint, b: bigint): bigint {
  return b === 0n ? a : gcd(b, a % b);
}

function lcm(a: bigint, b: bigint): bigint {
  return (a * b) / gcd(a, b);
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文