01. Python 工具
02. Python 基础
03. Numpy
- Numpy 简介
- Matplotlib 基础
- Numpy 数组及其索引
- 数组类型
- 数组方法
- 数组排序
- 数组形状
- 对角线
- 数组与字符串的转换
- 数组属性方法总结
- 生成数组的函数
- 矩阵
- 一般函数
- 向量化函数
- 二元运算
- ufunc 对象
- choose 函数实现条件筛选
- 数组广播机制
- 数组读写
- 结构化数组
- 记录数组
- 内存映射
- 从 Matlab 到 Numpy
04. Scipy
05. Python 进阶
- sys 模块简介
- 与操作系统进行交互:os 模块
- CSV 文件和 csv 模块
- 正则表达式和 re 模块
- datetime 模块
- SQL 数据库
- 对象关系映射
- 函数进阶:参数传递,高阶函数,lambda 匿名函数,global 变量,递归
- 迭代器
- 生成器
- with 语句和上下文管理器
- 修饰符
- 修饰符的使用
- operator, functools, itertools, toolz, fn, funcy 模块
- 作用域
- 动态编译
06. Matplotlib
- Pyplot 教程
- 使用 style 来配置 pyplot 风格
- 处理文本(基础)
- 处理文本(数学表达式)
- 图像基础
- 注释
- 标签
- figures, subplots, axes 和 ticks 对象
- 不要迷信默认设置
- 各种绘图实例
07. 使用其他语言进行扩展
- 简介
- Python 扩展模块
- Cython:Cython 基础,将源代码转换成扩展模块
- Cython:Cython 语法,调用其他C库
- Cython:class 和 cdef class,使用 C++
- Cython:Typed memoryviews
- 生成编译注释
- ctypes
08. 面向对象编程
09. Theano 基础
- Theano 简介及其安装
- Theano 基础
- Theano 在 Windows 上的配置
- Theano 符号图结构
- Theano 配置和编译模式
- Theano 条件语句
- Theano 循环:scan(详解)
- Theano 实例:线性回归
- Theano 实例:Logistic 回归
- Theano 实例:Softmax 回归
- Theano 实例:人工神经网络
- Theano 随机数流变量
- Theano 实例:更复杂的网络
- Theano 实例:卷积神经网络
- Theano tensor 模块:基础
- Theano tensor 模块:索引
- Theano tensor 模块:操作符和逐元素操作
- Theano tensor 模块:nnet 子模块
- Theano tensor 模块:conv 子模块
10. 有趣的第三方模块
11. 有用的工具
- pprint 模块:打印 Python 对象
- pickle, cPickle 模块:序列化 Python 对象
- json 模块:处理 JSON 数据
- glob 模块:文件模式匹配
- shutil 模块:高级文件操作
- gzip, zipfile, tarfile 模块:处理压缩文件
- logging 模块:记录日志
- string 模块:字符串处理
- collections 模块:更多数据结构
- requests 模块:HTTP for Human
12. Pandas
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Theano tensor 模块:conv 子模块
conv
是 tensor
中处理卷积神经网络的子模块。
卷积
这里只介绍二维卷积:
T.nnet.conv2d(input, filters, input_shape=None, filter_shape=None, border_mode='valid', subsample=(1, 1), filter_flip=True, image_shape=None, **kwargs)
conv2d
函数接受两个输入:
4D
张量input
,其形状如下:[b, ic, i0, i1]
4D
张量filter
,其形状如下:[oc, ic, f0, f1]
border_mode
控制输出大小:
'valid'
:输出形状:[b, oc, i0 - f0 + 1, i1 - f1 + 1]
'full'
:输出形状:[b, oc, i0 + f0 - 1, i1 + f1 - 1]
池化
池化操作:
T.signal.downsample.max_pool_2d(input, ds, ignore_border=None, st=None, padding=(0, 0), mode='max')
input
池化操作在其最后两维进行。
ds
是池化区域的大小,用长度为 2 的元组表示。
ignore_border
设为 Ture
时,(5, 5)
在 (2, 2)
的池化下会变成 (2, 2)
(5 % 2 == 1,多余的 1 个被舍去了),否则是 (3, 3)
。
MNIST 卷积神经网络形状详解
def model(X, w, w2, w3, w4, p_drop_conv, p_drop_hidden):
# X: 128 * 1 * 28 * 28
# w: 32 * 1 * 3 * 3
# full mode
# l1a: 128 * 32 * (28 + 3 - 1) * (28 + 3 - 1)
l1a = rectify(conv2d(X, w, border_mode='full'))
# l1a: 128 * 32 * 30 * 30
# ignore_border False
# l1: 128 * 32 * (30 / 2) * (30 / 2)
l1 = max_pool_2d(l1a, (2, 2), ignore_border=False)
l1 = dropout(l1, p_drop_conv)
# l1: 128 * 32 * 15 * 15
# w2: 64 * 32 * 3 * 3
# valid mode
# l2a: 128 * 64 * (15 - 3 + 1) * (15 - 3 + 1)
l2a = rectify(conv2d(l1, w2))
# l2a: 128 * 64 * 13 * 13
# l2: 128 * 64 * (13 / 2 + 1) * (13 / 2 + 1)
l2 = max_pool_2d(l2a, (2, 2), ignore_border=False)
l2 = dropout(l2, p_drop_conv)
# l2: 128 * 64 * 7 * 7
# w3: 128 * 64 * 3 * 3
# l3a: 128 * 128 * (7 - 3 + 1) * (7 - 3 + 1)
l3a = rectify(conv2d(l2, w3))
# l3a: 128 * 128 * 5 * 5
# l3b: 128 * 128 * (5 / 2 + 1) * (5 / 2 + 1)
l3b = max_pool_2d(l3a, (2, 2), ignore_border=False)
# l3b: 128 * 128 * 3 * 3
# l3: 128 * (128 * 3 * 3)
l3 = T.flatten(l3b, outdim=2)
l3 = dropout(l3, p_drop_conv)
# l3: 128 * (128 * 3 * 3)
# w4: (128 * 3 * 3) * 625
# l4: 128 * 625
l4 = rectify(T.dot(l3, w4))
l4 = dropout(l4, p_drop_hidden)
# l5: 128 * 625
# w5: 625 * 10
# pyx: 128 * 10
pyx = softmax(T.dot(l4, w_o))
return l1, l2, l3, l4, pyx
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论