返回介绍

solution / 1000-1099 / 1049.Last Stone Weight II / README

发布于 2024-06-17 01:03:31 字数 6506 浏览 0 评论 0 收藏 0

1049. 最后一块石头的重量 II

English Version

题目描述

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

 

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

 

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100

解法

方法一:动态规划

两个石头的重量越接近,粉碎后的新重量就越小。同样的,两堆石头的重量越接近,它们粉碎后的新重量也越小。

所以本题可以转换为,计算容量为 sum / 2 的背包最多能装多少重量的石头。

定义 dp[i][j] 表示从前 i 个石头中选出若干个,使得所选石头重量之和为不超过 j 的最大重量。

class Solution:
  def lastStoneWeightII(self, stones: List[int]) -> int:
    s = sum(stones)
    m, n = len(stones), s >> 1
    dp = [[0] * (n + 1) for _ in range(m + 1)]
    for i in range(1, m + 1):
      for j in range(n + 1):
        dp[i][j] = dp[i - 1][j]
        if stones[i - 1] <= j:
          dp[i][j] = max(
            dp[i][j], dp[i - 1][j - stones[i - 1]] + stones[i - 1]
          )
    return s - 2 * dp[-1][-1]
class Solution {
  public int lastStoneWeightII(int[] stones) {
    int s = 0;
    for (int v : stones) {
      s += v;
    }
    int m = stones.length;
    int n = s >> 1;
    int[][] dp = new int[m + 1][n + 1];
    for (int i = 1; i <= m; ++i) {
      for (int j = 0; j <= n; ++j) {
        dp[i][j] = dp[i - 1][j];
        if (stones[i - 1] <= j) {
          dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - stones[i - 1]] + stones[i - 1]);
        }
      }
    }
    return s - dp[m][n] * 2;
  }
}
class Solution {
public:
  int lastStoneWeightII(vector<int>& stones) {
    int s = accumulate(stones.begin(), stones.end(), 0);
    int m = stones.size(), n = s >> 1;
    vector<vector<int>> dp(m + 1, vector<int>(n + 1));
    for (int i = 1; i <= m; ++i) {
      for (int j = 0; j <= n; ++j) {
        dp[i][j] = dp[i - 1][j];
        if (stones[i - 1] <= j) dp[i][j] = max(dp[i][j], dp[i - 1][j - stones[i - 1]] + stones[i - 1]);
      }
    }
    return s - dp[m][n] * 2;
  }
};
func lastStoneWeightII(stones []int) int {
  s := 0
  for _, v := range stones {
    s += v
  }
  m, n := len(stones), s>>1
  dp := make([][]int, m+1)
  for i := range dp {
    dp[i] = make([]int, n+1)
  }
  for i := 1; i <= m; i++ {
    for j := 0; j <= n; j++ {
      dp[i][j] = dp[i-1][j]
      if stones[i-1] <= j {
        dp[i][j] = max(dp[i][j], dp[i-1][j-stones[i-1]]+stones[i-1])
      }
    }
  }
  return s - dp[m][n]*2
}
impl Solution {
  #[allow(dead_code)]
  pub fn last_stone_weight_ii(stones: Vec<i32>) -> i32 {
    let n = stones.len();
    let mut sum = 0;

    for e in &stones {
      sum += *e;
    }

    let m = (sum / 2) as usize;
    let mut dp: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];

    // Begin the actual dp process
    for i in 1..=n {
      for j in 1..=m {
        dp[i][j] = if stones[i - 1] > (j as i32) {
          dp[i - 1][j]
        } else {
          std::cmp::max(
            dp[i - 1][j],
            dp[i - 1][j - (stones[i - 1] as usize)] + stones[i - 1]
          )
        };
      }
    }

    sum - 2 * dp[n][m]
  }
}
/**
 * @param {number[]} stones
 * @return {number}
 */
var lastStoneWeightII = function (stones) {
  let s = 0;
  for (let v of stones) {
    s += v;
  }
  const n = s >> 1;
  let dp = new Array(n + 1).fill(0);
  for (let v of stones) {
    for (let j = n; j >= v; --j) {
      dp[j] = Math.max(dp[j], dp[j - v] + v);
    }
  }
  return s - dp[n] * 2;
};

方法二

class Solution:
  def lastStoneWeightII(self, stones: List[int]) -> int:
    s = sum(stones)
    m, n = len(stones), s >> 1
    dp = [0] * (n + 1)
    for v in stones:
      for j in range(n, v - 1, -1):
        dp[j] = max(dp[j], dp[j - v] + v)
    return s - dp[-1] * 2
class Solution {
  public int lastStoneWeightII(int[] stones) {
    int s = 0;
    for (int v : stones) {
      s += v;
    }
    int m = stones.length;
    int n = s >> 1;
    int[] dp = new int[n + 1];
    for (int v : stones) {
      for (int j = n; j >= v; --j) {
        dp[j] = Math.max(dp[j], dp[j - v] + v);
      }
    }
    return s - dp[n] * 2;
  }
}
class Solution {
public:
  int lastStoneWeightII(vector<int>& stones) {
    int s = accumulate(stones.begin(), stones.end(), 0);
    int n = s >> 1;
    vector<int> dp(n + 1);
    for (int& v : stones)
      for (int j = n; j >= v; --j)
        dp[j] = max(dp[j], dp[j - v] + v);
    return s - dp[n] * 2;
  }
};
func lastStoneWeightII(stones []int) int {
  s := 0
  for _, v := range stones {
    s += v
  }
  n := s >> 1
  dp := make([]int, n+1)
  for _, v := range stones {
    for j := n; j >= v; j-- {
      dp[j] = max(dp[j], dp[j-v]+v)
    }
  }
  return s - dp[n]*2
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文