返回介绍

solution / 2500-2599 / 2563.Count the Number of Fair Pairs / README_EN

发布于 2024-06-17 01:03:04 字数 5213 浏览 0 评论 0 收藏 0

2563. Count the Number of Fair Pairs

中文文档

Description

Given a 0-indexed integer array nums of size n and two integers lower and upper, return _the number of fair pairs_.

A pair (i, j) is fair if:

  • 0 <= i < j < n, and
  • lower <= nums[i] + nums[j] <= upper

 

Example 1:

Input: nums = [0,1,7,4,4,5], lower = 3, upper = 6
Output: 6
Explanation: There are 6 fair pairs: (0,3), (0,4), (0,5), (1,3), (1,4), and (1,5).

Example 2:

Input: nums = [1,7,9,2,5], lower = 11, upper = 11
Output: 1
Explanation: There is a single fair pair: (2,3).

 

Constraints:

  • 1 <= nums.length <= 105
  • nums.length == n
  • -109 <= nums[i] <= 109
  • -109 <= lower <= upper <= 109

Solutions

Solution 1: Sorting + Binary Search

First, we sort the array nums in ascending order. Then, for each nums[i], we use binary search to find the lower bound j of nums[j], i.e., the first index that satisfies nums[j] >= lower - nums[i]. Then, we use binary search again to find the lower bound k of nums[k], i.e., the first index that satisfies nums[k] >= upper - nums[i] + 1. Therefore, [j, k) is the index range for nums[j] that satisfies lower <= nums[i] + nums[j] <= upper. The count of these indices corresponding to nums[j] is k - j, and we can add this to the answer. Note that $j > i$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array nums.

class Solution:
  def countFairPairs(self, nums: List[int], lower: int, upper: int) -> int:
    nums.sort()
    ans = 0
    for i, x in enumerate(nums):
      j = bisect_left(nums, lower - x, lo=i + 1)
      k = bisect_left(nums, upper - x + 1, lo=i + 1)
      ans += k - j
    return ans
class Solution {
  public long countFairPairs(int[] nums, int lower, int upper) {
    Arrays.sort(nums);
    long ans = 0;
    int n = nums.length;
    for (int i = 0; i < n; ++i) {
      int j = search(nums, lower - nums[i], i + 1);
      int k = search(nums, upper - nums[i] + 1, i + 1);
      ans += k - j;
    }
    return ans;
  }

  private int search(int[] nums, int x, int left) {
    int right = nums.length;
    while (left < right) {
      int mid = (left + right) >> 1;
      if (nums[mid] >= x) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    return left;
  }
}
class Solution {
public:
  long long countFairPairs(vector<int>& nums, int lower, int upper) {
    long long ans = 0;
    sort(nums.begin(), nums.end());
    for (int i = 0; i < nums.size(); ++i) {
      auto j = lower_bound(nums.begin() + i + 1, nums.end(), lower - nums[i]);
      auto k = lower_bound(nums.begin() + i + 1, nums.end(), upper - nums[i] + 1);
      ans += k - j;
    }
    return ans;
  }
};
func countFairPairs(nums []int, lower int, upper int) (ans int64) {
  sort.Ints(nums)
  for i, x := range nums {
    j := sort.Search(len(nums), func(h int) bool { return h > i && nums[h] >= lower-x })
    k := sort.Search(len(nums), func(h int) bool { return h > i && nums[h] >= upper-x+1 })
    ans += int64(k - j)
  }
  return
}
function countFairPairs(nums: number[], lower: number, upper: number): number {
  const search = (x: number, l: number): number => {
    let r = nums.length;
    while (l < r) {
      const mid = (l + r) >> 1;
      if (nums[mid] >= x) {
        r = mid;
      } else {
        l = mid + 1;
      }
    }
    return l;
  };

  nums.sort((a, b) => a - b);
  let ans = 0;
  for (let i = 0; i < nums.length; ++i) {
    const j = search(lower - nums[i], i + 1);
    const k = search(upper - nums[i] + 1, i + 1);
    ans += k - j;
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文