- 概览
- 安装
- 教程
- 算法接口文档
- 简易高效的并行接口
- APIS
- FREQUENTLY ASKED QUESTIONS
- EVOKIT
- 其他
- parl.algorithms.paddle.policy_gradient
- parl.algorithms.paddle.dqn
- parl.algorithms.paddle.ddpg
- parl.algorithms.paddle.ddqn
- parl.algorithms.paddle.oac
- parl.algorithms.paddle.a2c
- parl.algorithms.paddle.qmix
- parl.algorithms.paddle.td3
- parl.algorithms.paddle.sac
- parl.algorithms.paddle.ppo
- parl.algorithms.paddle.maddpg
- parl.core.paddle.model
- parl.core.paddle.algorithm
- parl.remote.remote_decorator
- parl.core.paddle.agent
- parl.remote.client
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
parl.algorithms.paddle.dqn
parl.algorithms.paddle.dqn 源代码
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import parl import paddle from parl.utils.utils import check_model_method __all__ = ['DQN'] [文档]class DQN(parl.Algorithm): [文档] def __init__(self, model, gamma=None, lr=None): """ DQN algorithm Args: model (parl.Model): forward neural network representing the Q function. gamma (float): discounted factor for `accumulative` reward computation lr (float): learning rate. """ # checks check_model_method(model, 'forward', self.__class__.__name__) assert isinstance(gamma, float) assert isinstance(lr, float) self.model = model self.target_model = copy.deepcopy(model) self.gamma = gamma self.lr = lr self.mse_loss = paddle.nn.MSELoss(reduction='mean') self.optimizer = paddle.optimizer.Adam( learning_rate=lr, parameters=self.model.parameters()) [文档] def predict(self, obs): """ use self.model (Q function) to predict the action values """ return self.model(obs) [文档] def learn(self, obs, action, reward, next_obs, terminal): """ update the Q function (self.model) with DQN algorithm """ # Q pred_values = self.model(obs) action_dim = pred_values.shape[-1] action = paddle.squeeze(action, axis=-1) action_onehot = paddle.nn.functional.one_hot( action, num_classes=action_dim) pred_value = pred_values * action_onehot pred_value = paddle.sum(pred_value, axis=1, keepdim=True) # target Q with paddle.no_grad(): max_v = self.target_model(next_obs).max(1, keepdim=True) target = reward + (1 - terminal) * self.gamma * max_v loss = self.mse_loss(pred_value, target) # optimize self.optimizer.clear_grad() loss.backward() self.optimizer.step() return loss [文档] def sync_target(self): """ assign the parameters of the training network to the target network """ self.model.sync_weights_to(self.target_model)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论