返回介绍

solution / 2600-2699 / 2659.Make Array Empty / README_EN

发布于 2024-06-17 01:03:01 字数 11084 浏览 0 评论 0 收藏 0

2659. Make Array Empty

中文文档

Description

You are given an integer array nums containing distinct numbers, and you can perform the following operations until the array is empty:

  • If the first element has the smallest value, remove it
  • Otherwise, put the first element at the end of the array.

Return _an integer denoting the number of operations it takes to make _nums_ empty._

 

Example 1:

Input: nums = [3,4,-1]
Output: 5
OperationArray
1[4, -1, 3]
2[-1, 3, 4]
3[3, 4]
4[4]
5[]

Example 2:

Input: nums = [1,2,4,3]
Output: 5
OperationArray
1[2, 4, 3]
2[4, 3]
3[3, 4]
4[4]
5[]

Example 3:

Input: nums = [1,2,3]
Output: 3
OperationArray
1[2, 3]
2[3]
3[]

 

Constraints:

  • 1 <= nums.length <= 105
  • -10<= nums[i] <= 109
  • All values in nums are distinct.

Solutions

Solution 1: Hash Table + Sorting + Fenwick Tree

First, we use a hash table $pos$ to record the position of each element in array $nums$. Then, we sort array $nums$. The initial answer is the position of the minimum element in array $nums$ plus 1, which is $ans = pos[nums[0]] + 1$.

Next, we traverse the sorted array $nums$, the indexes of the two adjacent elements $a$ and $b$ are $i = pos[a]$, $j = pos[b]$. The number of operations needed to move the second element $b$ to the first position of the array and delete it is equal to the interval between the two indexes, minus the number of indexes deleted between the two indexes, and add the number of operations to the answer. We can use a Fenwick tree or an ordered list to maintain the deleted indexes between two indexes, so that we can find the number of deleted indexes between two indexes in $O(\log n)$ time. Note that if $i \gt j$, then we need to increase $n - k$ operations, where $k$ is the current position.

After the traversal is over, return the number of operations $ans$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the length of array $nums$.

from sortedcontainers import SortedList


class Solution:
  def countOperationsToEmptyArray(self, nums: List[int]) -> int:
    pos = {x: i for i, x in enumerate(nums)}
    nums.sort()
    sl = SortedList()
    ans = pos[nums[0]] + 1
    n = len(nums)
    for k, (a, b) in enumerate(pairwise(nums)):
      i, j = pos[a], pos[b]
      d = j - i - sl.bisect(j) + sl.bisect(i)
      ans += d + (n - k) * int(i > j)
      sl.add(i)
    return ans
class BinaryIndexedTree {
  private int n;
  private int[] c;

  public BinaryIndexedTree(int n) {
    this.n = n;
    c = new int[n + 1];
  }

  public void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += x & -x;
    }
  }

  public int query(int x) {
    int s = 0;
    while (x > 0) {
      s += c[x];
      x -= x & -x;
    }
    return s;
  }
}

class Solution {
  public long countOperationsToEmptyArray(int[] nums) {
    int n = nums.length;
    Map<Integer, Integer> pos = new HashMap<>();
    for (int i = 0; i < n; ++i) {
      pos.put(nums[i], i);
    }
    Arrays.sort(nums);
    long ans = pos.get(nums[0]) + 1;
    BinaryIndexedTree tree = new BinaryIndexedTree(n);
    for (int k = 0; k < n - 1; ++k) {
      int i = pos.get(nums[k]), j = pos.get(nums[k + 1]);
      long d = j - i - (tree.query(j + 1) - tree.query(i + 1));
      ans += d + (n - k) * (i > j ? 1 : 0);
      tree.update(i + 1, 1);
    }
    return ans;
  }
}
class BinaryIndexedTree {
public:
  BinaryIndexedTree(int _n)
    : n(_n)
    , c(_n + 1) {}

  void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += x & -x;
    }
  }

  int query(int x) {
    int s = 0;
    while (x) {
      s += c[x];
      x -= x & -x;
    }
    return s;
  }

private:
  int n;
  vector<int> c;
};

class Solution {
public:
  long long countOperationsToEmptyArray(vector<int>& nums) {
    unordered_map<int, int> pos;
    int n = nums.size();
    for (int i = 0; i < n; ++i) {
      pos[nums[i]] = i;
    }
    sort(nums.begin(), nums.end());
    BinaryIndexedTree tree(n);
    long long ans = pos[nums[0]] + 1;
    for (int k = 0; k < n - 1; ++k) {
      int i = pos[nums[k]], j = pos[nums[k + 1]];
      long long d = j - i - (tree.query(j + 1) - tree.query(i + 1));
      ans += d + (n - k) * int(i > j);
      tree.update(i + 1, 1);
    }
    return ans;
  }
};
type BinaryIndexedTree struct {
  n int
  c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
  c := make([]int, n+1)
  return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) update(x, delta int) {
  for x <= this.n {
    this.c[x] += delta
    x += x & -x
  }
}

func (this *BinaryIndexedTree) query(x int) int {
  s := 0
  for x > 0 {
    s += this.c[x]
    x -= x & -x
  }
  return s
}

func countOperationsToEmptyArray(nums []int) int64 {
  n := len(nums)
  pos := map[int]int{}
  for i, x := range nums {
    pos[x] = i
  }
  sort.Ints(nums)
  tree := newBinaryIndexedTree(n)
  ans := pos[nums[0]] + 1
  for k := 0; k < n-1; k++ {
    i, j := pos[nums[k]], pos[nums[k+1]]
    d := j - i - (tree.query(j+1) - tree.query(i+1))
    if i > j {
      d += n - k
    }
    ans += d
    tree.update(i+1, 1)
  }
  return int64(ans)
}
class BinaryIndexedTree {
  private n: number;
  private c: number[];

  constructor(n: number) {
    this.n = n;
    this.c = Array(n + 1).fill(0);
  }

  public update(x: number, v: number): void {
    while (x <= this.n) {
      this.c[x] += v;
      x += x & -x;
    }
  }

  public query(x: number): number {
    let s = 0;
    while (x > 0) {
      s += this.c[x];
      x -= x & -x;
    }
    return s;
  }
}

function countOperationsToEmptyArray(nums: number[]): number {
  const pos: Map<number, number> = new Map();
  const n = nums.length;
  for (let i = 0; i < n; ++i) {
    pos.set(nums[i], i);
  }
  nums.sort((a, b) => a - b);
  const tree = new BinaryIndexedTree(n);
  let ans = pos.get(nums[0])! + 1;
  for (let k = 0; k < n - 1; ++k) {
    const i = pos.get(nums[k])!;
    const j = pos.get(nums[k + 1])!;
    let d = j - i - (tree.query(j + 1) - tree.query(i + 1));
    if (i > j) {
      d += n - k;
    }
    ans += d;
    tree.update(i + 1, 1);
  }
  return ans;
}

Solution 2

class BinaryIndexedTree:
  def __init__(self, n):
    self.n = n
    self.c = [0] * (n + 1)

  def update(self, x, delta):
    while x <= self.n:
      self.c[x] += delta
      x += x & -x

  def query(self, x):
    s = 0
    while x:
      s += self.c[x]
      x -= x & -x
    return s


class Solution:
  def countOperationsToEmptyArray(self, nums: List[int]) -> int:
    pos = {x: i for i, x in enumerate(nums)}
    nums.sort()
    ans = pos[nums[0]] + 1
    n = len(nums)
    tree = BinaryIndexedTree(n)
    for k, (a, b) in enumerate(pairwise(nums)):
      i, j = pos[a], pos[b]
      d = j - i - tree.query(j + 1) + tree.query(i + 1)
      ans += d + (n - k) * int(i > j)
      tree.update(i + 1, 1)
    return ans

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文