返回介绍

solution / 2300-2399 / 2397.Maximum Rows Covered by Columns / README_EN

发布于 2024-06-17 01:03:06 字数 7561 浏览 0 评论 0 收藏 0

2397. Maximum Rows Covered by Columns

中文文档

Description

You are given a 0-indexed m x n binary matrix matrix and an integer numSelect, which denotes the number of distinct columns you must select from matrix.

Let us consider s = {c1, c2, ...., cnumSelect} as the set of columns selected by you. A row row is covered by s if:

  • For each cell matrix[row][col] (0 <= col <= n - 1) where matrix[row][col] == 1, col is present in s or,
  • No cell in row has a value of 1.

You need to choose numSelect columns such that the number of rows that are covered is maximized.

Return _the maximum number of rows that can be covered by a set of _numSelect_ columns._

 

Example 1:

Input: matrix = [[0,0,0],[1,0,1],[0,1,1],[0,0,1]], numSelect = 2
Output: 3
Explanation: One possible way to cover 3 rows is shown in the diagram above.
We choose s = {0, 2}.
- Row 0 is covered because it has no occurrences of 1.
- Row 1 is covered because the columns with value 1, i.e. 0 and 2 are present in s.
- Row 2 is not covered because matrix[2][1] == 1 but 1 is not present in s.
- Row 3 is covered because matrix[2][2] == 1 and 2 is present in s.
Thus, we can cover three rows.
Note that s = {1, 2} will also cover 3 rows, but it can be shown that no more than three rows can be covered.

Example 2:

Input: matrix = [[1],[0]], numSelect = 1
Output: 2
Explanation: Selecting the only column will result in both rows being covered since the entire matrix is selected.
Therefore, we return 2.

 

Constraints:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 12
  • matrix[i][j] is either 0 or 1.
  • 1 <= numSelect <= n

Solutions

Solution 1: Binary Enumeration

First, we convert each row of the matrix into a binary number and record it in the array $rows$. Here, $rows[i]$ represents the binary number corresponding to the $i$-th row, and the $j$-th bit of this binary number $rows[i]$ represents the value of the $i$-th row and $j$-th column.

Next, we enumerate all $2^n$ column selection schemes, where $n$ is the number of columns in the matrix. For each column selection scheme, we check whether numSelect columns have been selected. If not, we skip it. Otherwise, we count how many rows in the matrix are covered by the selected columns, i.e., how many binary numbers $rows[i]$ are equal to the bitwise AND of $rows[i]$ and the column selection scheme $mask$. We then update the maximum number of rows.

The time complexity is $O(2^n \times m)$, and the space complexity is $O(m)$. Where $m$ and $n$ are the number of rows and columns in the matrix, respectively.

class Solution:
  def maximumRows(self, matrix: List[List[int]], numSelect: int) -> int:
    rows = []
    for row in matrix:
      mask = reduce(or_, (1 << j for j, x in enumerate(row) if x), 0)
      rows.append(mask)

    ans = 0
    for mask in range(1 << len(matrix[0])):
      if mask.bit_count() != numSelect:
        continue
      t = sum((x & mask) == x for x in rows)
      ans = max(ans, t)
    return ans
class Solution {
  public int maximumRows(int[][] matrix, int numSelect) {
    int m = matrix.length, n = matrix[0].length;
    int[] rows = new int[m];
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        if (matrix[i][j] == 1) {
          rows[i] |= 1 << j;
        }
      }
    }
    int ans = 0;
    for (int mask = 1; mask < 1 << n; ++mask) {
      if (Integer.bitCount(mask) != numSelect) {
        continue;
      }
      int t = 0;
      for (int x : rows) {
        if ((x & mask) == x) {
          ++t;
        }
      }
      ans = Math.max(ans, t);
    }
    return ans;
  }
}
class Solution {
public:
  int maximumRows(vector<vector<int>>& matrix, int numSelect) {
    int m = matrix.size(), n = matrix[0].size();
    int rows[m];
    memset(rows, 0, sizeof(rows));
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        if (matrix[i][j]) {
          rows[i] |= 1 << j;
        }
      }
    }
    int ans = 0;
    for (int mask = 1; mask < 1 << n; ++mask) {
      if (__builtin_popcount(mask) != numSelect) {
        continue;
      }
      int t = 0;
      for (int x : rows) {
        t += (x & mask) == x;
      }
      ans = max(ans, t);
    }
    return ans;
  }
};
func maximumRows(matrix [][]int, numSelect int) (ans int) {
  m, n := len(matrix), len(matrix[0])
  rows := make([]int, m)
  for i, row := range matrix {
    for j, x := range row {
      if x == 1 {
        rows[i] |= 1 << j
      }
    }
  }
  for mask := 1; mask < 1<<n; mask++ {
    if bits.OnesCount(uint(mask)) != numSelect {
      continue
    }
    t := 0
    for _, x := range rows {
      if (x & mask) == x {
        t++
      }
    }
    if ans < t {
      ans = t
    }
  }
  return
}
function maximumRows(matrix: number[][], numSelect: number): number {
  const [m, n] = [matrix.length, matrix[0].length];
  const rows: number[] = Array(m).fill(0);
  for (let i = 0; i < m; ++i) {
    for (let j = 0; j < n; ++j) {
      if (matrix[i][j]) {
        rows[i] |= 1 << j;
      }
    }
  }
  let ans = 0;
  for (let mask = 1; mask < 1 << n; ++mask) {
    if (bitCount(mask) !== numSelect) {
      continue;
    }
    let t = 0;
    for (const x of rows) {
      if ((x & mask) === x) {
        ++t;
      }
    }
    ans = Math.max(ans, t);
  }
  return ans;
}

function bitCount(i: number): number {
  i = i - ((i >>> 1) & 0x55555555);
  i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
  i = (i + (i >>> 4)) & 0x0f0f0f0f;
  i = i + (i >>> 8);
  i = i + (i >>> 16);
  return i & 0x3f;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文