返回介绍

2.9 算法时间复杂度

发布于 2024-08-19 23:28:45 字数 4331 浏览 0 评论 0 收藏 0

2.9.1 算法时间复杂度定义

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法。

一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。

显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n),O(1),O(n2)。我们分别给它们取了非官方的名称,O(1)叫常数阶、O(n)叫线性阶、O(n2)叫平方阶,当然,还有其他的一些阶,我们之后会介绍。

2.9.2 推导大O阶方法

那么如何分析一个算法的时间复杂度呢?即如何推导大O阶呢?我们给出了下面的推导方法,基本上,这也就是总结前面我们举的例子。

推导大O阶:

1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行次数函数中,只保留最高阶项。
3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

得到的结果就是大O阶。

哈,仿佛是得到了游戏攻略一样,我们好像已经得到了一个推导算法时间复杂度的万能公式。可事实上,分析一个算法的时间复杂度,没有这么简单,我们还需要多看几个例子。

2.9.3 常数阶

首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法(高斯算法),为什么时间复杂度不是O(3),而是O(1)。

int sum = 0,n = 100;      /* 执行一次 */
sum = (1 + n) * n / 2;    /* 执行一次 */
printf("%d", sum);        /* 执行一次 */

这个算法的运行次数函数是f(n)=3。根据我们推导大O阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。

另外,我们试想一下,如果这个算法当中的语句sum=(1+n)*n/2有10句,即:

int sum = 0, n = 100;     /* 执行1次 */
sum = (1 + n) * n / 2;    /* 执行第1次 */
sum = (1 + n) * n / 2;    /* 执行第2次 */
sum = (1 + n) * n / 2;    /* 执行第3次 */
sum = (1 + n) * n / 2;    /* 执行第4次 */
sum = (1 + n) * n / 2;    /* 执行第5次 */
sum = (1 + n) * n / 2;    /* 执行第6次 */
sum = (1 + n) * n / 2;    /* 执行第7次 */
sum = (1 + n) * n / 2;    /* 执行第8次 */
sum = (1 + n) * n / 2;    /* 执行第9次 */
sum = (1 + n) * n / 2;    /* 执行第10次 */
printf("%d", sum);        /* 执行1次 */

事实上无论n为多少,上面的两段代码就是3次和12次执行的差异。这种与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。

注意:不管这个常数是多少,我们都记作O(1),而不能是O(3)、O(12)等其他任何数字,这是初学者常常犯的错误。

对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n的变大而发生变化,所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是O(1)。

2.9.4 线性阶

线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

下面这段代码,它的循环的时间复杂度为O(n),因为循环体中的代码须要执行n次。

int i;
for (i = 0; i < n; i++)
{
    /* 时间复杂度为O(1)的程序步骤序列 */
}

2.9.5 对数阶

下面的这段代码,时间复杂度又是多少呢?

int count = 1;
while (count < n)
{
    count = count * 2;
    /* 时间复杂度为O(1)的程序步骤序列 */
}

由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2x=n得到x=log2n。所以这个循环的时间复杂度为O(logn)。

2.9.6 平方阶

下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。

int i, j;
for (i = 0; i < n; i++)
{
    for (j = 0; j < n; j++)
    {
        /* 时间复杂度为O(1)的程序步骤序列 */
    }
}

而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度为O(n2)。

如果外循环的循环次数改为了m,时间复杂度就变为O(m×n)。

int i, j;
for (i = 0; i < m; i++)
{
    for (j = 0; j < n; j++)
    {
        /* 时间复杂度为O(1)的程序步骤序列 */
    }
}

所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。

那么下面这个循环嵌套,它的时间复杂度是多少呢?

int i, j;
for (i = 0; i < n; i++)
{
    /* 注意j = i 而不是0 */
    for (j = i; j < n; j++)  
    {
        /* 时间复杂度为O(1)的程序步骤序列 */
    }
}

由于当i=0时,内循环执行了n次,当i=1时,执行了n-1次,……当i=n-1时,执行了1次。所以总的执行次数为:

用我们推导大O阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n2/2;第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n2)。

从这个例子,我们也可以得到一个经验,其实理解大O推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力,所以想考研的朋友,要想在求算法时间复杂度这里不失分,可能需要强化你的数学,特别是数列方面的知识和解题能力。

我们继续看例子,对于方法调用的时间复杂度又如何分析。

int i, j;
for (i = 0; i < n; i++)
{
    function(i);
}

上面这段代码调用一个函数function。

void function(int count)
{
    print(count);
}

函数体是打印这个参数。其实这很好理解,function函数的时间复杂度是O(1)。所以整体的时间复杂度为O(n)。

假如function是下面这样的:

void function(int count)
{
    int j;
    for (j = count; j < n; j++)
    {
        /* 时间复杂度为O(1)的程序步骤序列 */
    }
}

事实上,这和刚才举的例子是一样的,只不过把嵌套内循环放到了函数中,所以最终的时间复杂度为O(n2)。

下面这段相对复杂的语句:

n++;                       /* 执行次数为1 */
function(n);               /* 执行次数为n */
int i, j;
for (i = 0; i < n; i++)    /* 执行次数为n2 */
{
    function (i);
}
for (i = 0; i < n; i++)    /* 执行次数为n(n + 1)/2 */
{
    for (j = i; j < n; j++)
    {
        /* 时间复杂度为O(1)的程序步骤序列 */
    }
}

它的执行次数f(n)=1+n+n2+n(n+1)/2=3/2·n2+3/2·n+1,根据推导大O阶的方法,最终这段代码的时间复杂度也是O(n2)。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文