返回介绍

solution / 1000-1099 / 1039.Minimum Score Triangulation of Polygon / README_EN

发布于 2024-06-17 01:03:31 字数 10285 浏览 0 评论 0 收藏 0

1039. Minimum Score Triangulation of Polygon

中文文档

Description

You have a convex n-sided polygon where each vertex has an integer value. You are given an integer array values where values[i] is the value of the ith vertex (i.e., clockwise order).

You will triangulate the polygon into n - 2 triangles. For each triangle, the value of that triangle is the product of the values of its vertices, and the total score of the triangulation is the sum of these values over all n - 2 triangles in the triangulation.

Return _the smallest possible total score that you can achieve with some triangulation of the polygon_.

 

Example 1:

Input: values = [1,2,3]
Output: 6
Explanation: The polygon is already triangulated, and the score of the only triangle is 6.

Example 2:

Input: values = [3,7,4,5]
Output: 144
Explanation: There are two triangulations, with possible scores: 3*7*5 + 4*5*7 = 245, or 3*4*5 + 3*4*7 = 144.
The minimum score is 144.

Example 3:

Input: values = [1,3,1,4,1,5]
Output: 13
Explanation: The minimum score triangulation has score 1*1*3 + 1*1*4 + 1*1*5 + 1*1*1 = 13.

 

Constraints:

  • n == values.length
  • 3 <= n <= 50
  • 1 <= values[i] <= 100

Solutions

Solution 1

class Solution:
  def minScoreTriangulation(self, values: List[int]) -> int:
    @cache
    def dfs(i: int, j: int) -> int:
      if i + 1 == j:
        return 0
      return min(
        dfs(i, k) + dfs(k, j) + values[i] * values[k] * values[j]
        for k in range(i + 1, j)
      )

    return dfs(0, len(values) - 1)
class Solution {
  private int n;
  private int[] values;
  private Integer[][] f;

  public int minScoreTriangulation(int[] values) {
    n = values.length;
    this.values = values;
    f = new Integer[n][n];
    return dfs(0, n - 1);
  }

  private int dfs(int i, int j) {
    if (i + 1 == j) {
      return 0;
    }
    if (f[i][j] != null) {
      return f[i][j];
    }
    int ans = 1 << 30;
    for (int k = i + 1; k < j; ++k) {
      ans = Math.min(ans, dfs(i, k) + dfs(k, j) + values[i] * values[k] * values[j]);
    }
    return f[i][j] = ans;
  }
}
class Solution {
public:
  int minScoreTriangulation(vector<int>& values) {
    int n = values.size();
    int f[n][n];
    memset(f, 0, sizeof(f));
    function<int(int, int)> dfs = [&](int i, int j) -> int {
      if (i + 1 == j) {
        return 0;
      }
      if (f[i][j]) {
        return f[i][j];
      }
      int ans = 1 << 30;
      for (int k = i + 1; k < j; ++k) {
        ans = min(ans, dfs(i, k) + dfs(k, j) + values[i] * values[k] * values[j]);
      }
      return f[i][j] = ans;
    };
    return dfs(0, n - 1);
  }
};
func minScoreTriangulation(values []int) int {
  n := len(values)
  f := [50][50]int{}
  var dfs func(int, int) int
  dfs = func(i, j int) int {
    if i+1 == j {
      return 0
    }
    if f[i][j] != 0 {
      return f[i][j]
    }
    f[i][j] = 1 << 30
    for k := i + 1; k < j; k++ {
      f[i][j] = min(f[i][j], dfs(i, k)+dfs(k, j)+values[i]*values[k]*values[j])
    }
    return f[i][j]
  }
  return dfs(0, n-1)
}
function minScoreTriangulation(values: number[]): number {
  const n = values.length;
  const f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => 0));
  const dfs = (i: number, j: number): number => {
    if (i + 1 === j) {
      return 0;
    }
    if (f[i][j] > 0) {
      return f[i][j];
    }
    let ans = 1 << 30;
    for (let k = i + 1; k < j; ++k) {
      ans = Math.min(ans, dfs(i, k) + dfs(k, j) + values[i] * values[k] * values[j]);
    }
    f[i][j] = ans;
    return ans;
  };
  return dfs(0, n - 1);
}

Solution 2

class Solution:
  def minScoreTriangulation(self, values: List[int]) -> int:
    n = len(values)
    f = [[0] * n for _ in range(n)]
    for i in range(n - 3, -1, -1):
      for j in range(i + 2, n):
        f[i][j] = min(
          f[i][k] + f[k][j] + values[i] * values[k] * values[j]
          for k in range(i + 1, j)
        )
    return f[0][-1]
class Solution {
  public int minScoreTriangulation(int[] values) {
    int n = values.length;
    int[][] f = new int[n][n];
    for (int i = n - 3; i >= 0; --i) {
      for (int j = i + 2; j < n; ++j) {
        f[i][j] = 1 << 30;
        for (int k = i + 1; k < j; ++k) {
          f[i][j]
            = Math.min(f[i][j], f[i][k] + f[k][j] + values[i] * values[k] * values[j]);
        }
      }
    }
    return f[0][n - 1];
  }
}
class Solution {
public:
  int minScoreTriangulation(vector<int>& values) {
    int n = values.size();
    int f[n][n];
    memset(f, 0, sizeof(f));
    for (int i = n - 3; i >= 0; --i) {
      for (int j = i + 2; j < n; ++j) {
        f[i][j] = 1 << 30;
        for (int k = i + 1; k < j; ++k) {
          f[i][j] = min(f[i][j], f[i][k] + f[k][j] + values[i] * values[k] * values[j]);
        }
      }
    }
    return f[0][n - 1];
  }
};
func minScoreTriangulation(values []int) int {
  n := len(values)
  f := [50][50]int{}
  for i := n - 3; i >= 0; i-- {
    for j := i + 2; j < n; j++ {
      f[i][j] = 1 << 30
      for k := i + 1; k < j; k++ {
        f[i][j] = min(f[i][j], f[i][k]+f[k][j]+values[i]*values[k]*values[j])
      }
    }
  }
  return f[0][n-1]
}
function minScoreTriangulation(values: number[]): number {
  const n = values.length;
  const f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => 0));
  for (let i = n - 3; i >= 0; --i) {
    for (let j = i + 2; j < n; ++j) {
      f[i][j] = 1 << 30;
      for (let k = i + 1; k < j; ++k) {
        f[i][j] = Math.min(f[i][j], f[i][k] + f[k][j] + values[i] * values[k] * values[j]);
      }
    }
  }
  return f[0][n - 1];
}

Solution 3

class Solution:
  def minScoreTriangulation(self, values: List[int]) -> int:
    n = len(values)
    f = [[0] * n for _ in range(n)]
    for l in range(3, n + 1):
      for i in range(n - l + 1):
        j = i + l - 1
        f[i][j] = min(
          f[i][k] + f[k][j] + values[i] * values[k] * values[j]
          for k in range(i + 1, j)
        )
    return f[0][-1]
class Solution {
  public int minScoreTriangulation(int[] values) {
    int n = values.length;
    int[][] f = new int[n][n];
    for (int l = 3; l <= n; ++l) {
      for (int i = 0; i + l - 1 < n; ++i) {
        int j = i + l - 1;
        f[i][j] = 1 << 30;
        for (int k = i + 1; k < j; ++k) {
          f[i][j]
            = Math.min(f[i][j], f[i][k] + f[k][j] + values[i] * values[k] * values[j]);
        }
      }
    }
    return f[0][n - 1];
  }
}
class Solution {
public:
  int minScoreTriangulation(vector<int>& values) {
    int n = values.size();
    int f[n][n];
    memset(f, 0, sizeof(f));
    for (int l = 3; l <= n; ++l) {
      for (int i = 0; i + l - 1 < n; ++i) {
        int j = i + l - 1;
        f[i][j] = 1 << 30;
        for (int k = i + 1; k < j; ++k) {
          f[i][j] = min(f[i][j], f[i][k] + f[k][j] + values[i] * values[k] * values[j]);
        }
      }
    }
    return f[0][n - 1];
  }
};
func minScoreTriangulation(values []int) int {
  n := len(values)
  f := [50][50]int{}
  for l := 3; l <= n; l++ {
    for i := 0; i+l-1 < n; i++ {
      j := i + l - 1
      f[i][j] = 1 << 30
      for k := i + 1; k < j; k++ {
        f[i][j] = min(f[i][j], f[i][k]+f[k][j]+values[i]*values[k]*values[j])
      }
    }
  }
  return f[0][n-1]
}
function minScoreTriangulation(values: number[]): number {
  const n = values.length;
  const f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => 0));
  for (let l = 3; l <= n; ++l) {
    for (let i = 0; i + l - 1 < n; ++i) {
      const j = i + l - 1;
      f[i][j] = 1 << 30;
      for (let k = i + 1; k < j; ++k) {
        f[i][j] = Math.min(f[i][j], f[i][k] + f[k][j] + values[i] * values[k] * values[j]);
      }
    }
  }
  return f[0][n - 1];
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文