返回介绍

solution / 0700-0799 / 0741.Cherry Pickup / README_EN

发布于 2024-06-17 01:03:34 字数 7918 浏览 0 评论 0 收藏 0

741. Cherry Pickup

中文文档

Description

You are given an n x n grid representing a field of cherries, each cell is one of three possible integers.

  • 0 means the cell is empty, so you can pass through,
  • 1 means the cell contains a cherry that you can pick up and pass through, or
  • -1 means the cell contains a thorn that blocks your way.

Return _the maximum number of cherries you can collect by following the rules below_:

  • Starting at the position (0, 0) and reaching (n - 1, n - 1) by moving right or down through valid path cells (cells with value 0 or 1).
  • After reaching (n - 1, n - 1), returning to (0, 0) by moving left or up through valid path cells.
  • When passing through a path cell containing a cherry, you pick it up, and the cell becomes an empty cell 0.
  • If there is no valid path between (0, 0) and (n - 1, n - 1), then no cherries can be collected.

 

Example 1:

Input: grid = [[0,1,-1],[1,0,-1],[1,1,1]]
Output: 5
Explanation: The player started at (0, 0) and went down, down, right right to reach (2, 2).
4 cherries were picked up during this single trip, and the matrix becomes [[0,1,-1],[0,0,-1],[0,0,0]].
Then, the player went left, up, up, left to return home, picking up one more cherry.
The total number of cherries picked up is 5, and this is the maximum possible.

Example 2:

Input: grid = [[1,1,-1],[1,-1,1],[-1,1,1]]
Output: 0

 

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 50
  • grid[i][j] is -1, 0, or 1.
  • grid[0][0] != -1
  • grid[n - 1][n - 1] != -1

Solutions

Solution 1

class Solution:
  def cherryPickup(self, grid: List[List[int]]) -> int:
    n = len(grid)
    dp = [[[-inf] * n for _ in range(n)] for _ in range((n << 1) - 1)]
    dp[0][0][0] = grid[0][0]
    for k in range(1, (n << 1) - 1):
      for i1 in range(n):
        for i2 in range(n):
          j1, j2 = k - i1, k - i2
          if (
            not 0 <= j1 < n
            or not 0 <= j2 < n
            or grid[i1][j1] == -1
            or grid[i2][j2] == -1
          ):
            continue
          t = grid[i1][j1]
          if i1 != i2:
            t += grid[i2][j2]
          for x1 in range(i1 - 1, i1 + 1):
            for x2 in range(i2 - 1, i2 + 1):
              if x1 >= 0 and x2 >= 0:
                dp[k][i1][i2] = max(
                  dp[k][i1][i2], dp[k - 1][x1][x2] + t
                )
    return max(0, dp[-1][-1][-1])
class Solution {
  public int cherryPickup(int[][] grid) {
    int n = grid.length;
    int[][][] dp = new int[n * 2][n][n];
    dp[0][0][0] = grid[0][0];
    for (int k = 1; k < n * 2 - 1; ++k) {
      for (int i1 = 0; i1 < n; ++i1) {
        for (int i2 = 0; i2 < n; ++i2) {
          int j1 = k - i1, j2 = k - i2;
          dp[k][i1][i2] = Integer.MIN_VALUE;
          if (j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1
            || grid[i2][j2] == -1) {
            continue;
          }
          int t = grid[i1][j1];
          if (i1 != i2) {
            t += grid[i2][j2];
          }
          for (int x1 = i1 - 1; x1 <= i1; ++x1) {
            for (int x2 = i2 - 1; x2 <= i2; ++x2) {
              if (x1 >= 0 && x2 >= 0) {
                dp[k][i1][i2] = Math.max(dp[k][i1][i2], dp[k - 1][x1][x2] + t);
              }
            }
          }
        }
      }
    }
    return Math.max(0, dp[n * 2 - 2][n - 1][n - 1]);
  }
}
class Solution {
public:
  int cherryPickup(vector<vector<int>>& grid) {
    int n = grid.size();
    vector<vector<vector<int>>> dp(n << 1, vector<vector<int>>(n, vector<int>(n, -1e9)));
    dp[0][0][0] = grid[0][0];
    for (int k = 1; k < n * 2 - 1; ++k) {
      for (int i1 = 0; i1 < n; ++i1) {
        for (int i2 = 0; i2 < n; ++i2) {
          int j1 = k - i1, j2 = k - i2;
          if (j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1 || grid[i2][j2] == -1) continue;
          int t = grid[i1][j1];
          if (i1 != i2) t += grid[i2][j2];
          for (int x1 = i1 - 1; x1 <= i1; ++x1)
            for (int x2 = i2 - 1; x2 <= i2; ++x2)
              if (x1 >= 0 && x2 >= 0)
                dp[k][i1][i2] = max(dp[k][i1][i2], dp[k - 1][x1][x2] + t);
        }
      }
    }
    return max(0, dp[n * 2 - 2][n - 1][n - 1]);
  }
};
func cherryPickup(grid [][]int) int {
  n := len(grid)
  dp := make([][][]int, (n<<1)-1)
  for i := range dp {
    dp[i] = make([][]int, n)
    for j := range dp[i] {
      dp[i][j] = make([]int, n)
    }
  }
  dp[0][0][0] = grid[0][0]
  for k := 1; k < (n<<1)-1; k++ {
    for i1 := 0; i1 < n; i1++ {
      for i2 := 0; i2 < n; i2++ {
        dp[k][i1][i2] = int(-1e9)
        j1, j2 := k-i1, k-i2
        if j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1 || grid[i2][j2] == -1 {
          continue
        }
        t := grid[i1][j1]
        if i1 != i2 {
          t += grid[i2][j2]
        }
        for x1 := i1 - 1; x1 <= i1; x1++ {
          for x2 := i2 - 1; x2 <= i2; x2++ {
            if x1 >= 0 && x2 >= 0 {
              dp[k][i1][i2] = max(dp[k][i1][i2], dp[k-1][x1][x2]+t)
            }
          }
        }
      }
    }
  }
  return max(0, dp[n*2-2][n-1][n-1])
}
/**
 * @param {number[][]} grid
 * @return {number}
 */
var cherryPickup = function (grid) {
  const n = grid.length;
  let dp = new Array(n * 2 - 1);
  for (let k = 0; k < dp.length; ++k) {
    dp[k] = new Array(n);
    for (let i = 0; i < n; ++i) {
      dp[k][i] = new Array(n).fill(-1e9);
    }
  }
  dp[0][0][0] = grid[0][0];
  for (let k = 1; k < n * 2 - 1; ++k) {
    for (let i1 = 0; i1 < n; ++i1) {
      for (let i2 = 0; i2 < n; ++i2) {
        const j1 = k - i1,
          j2 = k - i2;
        if (
          j1 < 0 ||
          j1 >= n ||
          j2 < 0 ||
          j2 >= n ||
          grid[i1][j1] == -1 ||
          grid[i2][j2] == -1
        ) {
          continue;
        }
        let t = grid[i1][j1];
        if (i1 != i2) {
          t += grid[i2][j2];
        }
        for (let x1 = i1 - 1; x1 <= i1; ++x1) {
          for (let x2 = i2 - 1; x2 <= i2; ++x2) {
            if (x1 >= 0 && x2 >= 0) {
              dp[k][i1][i2] = Math.max(dp[k][i1][i2], dp[k - 1][x1][x2] + t);
            }
          }
        }
      }
    }
  }
  return Math.max(0, dp[n * 2 - 2][n - 1][n - 1]);
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文